East Midlands Hydrogen Storage (EMStor)
Abstract
UK’s Net Zero Emissions Target and the Role of Hydrogen: The UK has committed to a legally binding net zero emissions target by 2050. Achieving this target necessitates the integration of hydrogen, particularly in hard-to-decarbonize industrial applications and peaking power generation. The recent publication of the Climate Change Committee’s Seventh Carbon Budget highlights hydrogen’s significant role within the electricity supply sector. Hydrogen is identified as a crucial source of long-term storable energy that can be dispatched as needed and as a feedstock for synthetic fuels. For hydrogen to fully contribute to a future hydrogen system, its production, storage, and transportation must be considered collectively.
East Coast Hydrogen (ECH) Project: In recent years, Cadent, in partnership with National Gas and Northern Gas Networks (NGN), has developed the East Coast Hydrogen (ECH) Project. The ECH project aims to decarbonize primarily industry and power sectors. As part of this initiative, Cadent has developed the East Midlands Hydrogen Pipeline (EMHP), which aims to connect hydrogen production at Uniper’s Ratcliffe on Soar site to major industrial and power off-takers in the East Midlands. The project seeks to transport hydrogen to major population centres, including Nottingham, Leicester, Melton Mowbray, Derby, and Burton upon Trent. During the development of the EMHP, it became evident that hydrogen storage plays a critical role in establishing a resilient and efficient hydrogen system. Consequently, a consortium was formed to explore the feasibility of storage, leading to the East Midlands Storage Project (EMSTOR).
Discovery Phase of EMSTOR: During the Discovery Phase, EMSTOR evaluated various technologies for large-scale hydrogen storage in the East Midlands. The technologies considered included lined rock caverns, lined rock shafts, silos, and geological storage options such as aquifers and disused hydrocarbon fields. After comparing these technologies against several technical parameters, including Technology Readiness Level (TRL), cost, size, and location relative to pipelines, it was determined that hydrogen storage in geological fields, particularly disused hydrocarbon fields, is the most viable option. Therefore, disused hydrocarbon fields in geological formations were selected for further consideration in the Alpha Phase.
Alpha Phase Consortium: To execute the Alpha Phase, a consortium led by Cadent and including Star Energy Ltd, Centrica Energy Storage, National Grid, British Geological Society, University of Edinburgh, and Uniper was established. This consortium will focus on advancing the feasibility and implementation of hydrogen storage in disused hydrocarbon fields.