- Home
- Projects
Projects
Hydrogen Fracture Surfaces Assessment
The LTS Futures project aims to understand how the local transmission system (LTS) could be repurposed from Natural Gas to hydrogen. The project encompasses several elements which will feed into a blueprint methodology for repurposing the LTS to hydrogen. During one of the work elements LTS Futures conducted full-scale testing of pipeline defects and small-bore connections exposed to hydrogen. Testing was conducted until failure to provide information for hydrogen pipeline design standards and operational procedures. This project will undertake further detailed analysis of the fracture surfaces to provide a visual confirmation of hydrogen diffusion into the pipeline microstructure and if this contributed to failure.
Net Zero Multi-Vector Assessment
This project will help Cadent to understand considerations for a Net Zero Multi-Vector at a town scale to inform future activity on preparation for repurposing. An area will be chosen which is representative of different networks housing stock and demographics which will require different approaches and engagement.
Air Ingress in Multi Occupancy Buildings (MOBs)
This project will help to inform UK Gas Distribution Network Operators (GDNOs) and wider industry on the impact of the potential for air ingress into gas-conveying pipework in MOBs. The mechanisms for air ingress into gas-conveying pipework have been shown to be gas agnostic though this project will focus on impacts specific to future hydrogen distribution to MOBs.
Equations of State for Net Zero Gases
In metering applications Equations of State (EoS) are mathematical models that are used to convert measured volumes to standard units. This enables transfer from volume to mass allowing customers to be billed and for the networked to be balanced in energy. Metering and network balancing cannot be performed in volume as it doesn’t account for relative varying gas component concentrations – and therefore CV.
The EoS currently used (AGA8) is acceptable for up to 5% hydrogen but after this point it’s uncertainty is unknown – meaning the network may be unable to maintain accurate billing or system balancing. This project will obtain experimental data for a range of net zero gases and compare the output of several EoS for accuracy against real measured NTS-representative conditions.
NTS Pipeline Assessments Phase 2
This project will build upon previous work to inform decisions relating to the repurposing of National Transmission System pipelines for 100% hydrogen and hydrogen-natural gas blends. New input data will be generated and collated the assessment methodology will be refined and an alternative assessment method probabilistic will be utilised and the resulting network impact will be considered.
This project will generate the following benefits:
- More accurate assessment of the capability of the NTS to transport 100% hydrogen and hydrogen-natural gas blends.
- Data on the impact of low percentage blend hydrogen on pipeline materials.
- Standardised document for Engineering Critical Assessments (ECA) of hydrogen and hydrogen-natural gas blend pipelines and pipework.
Greater understanding on the effect of hydrogen on the design and operation of pipeline systems.
Net Zero Safety & Ignition Risk
National Gas are investigating the use of the National Transmission System to transport hydrogen and hydrogen blends. To support this research and testing is required to understand the risks of high pressure hydrogen transmission including ignition. This project will identify for 100% hydrogen and blends of hydrogen up to 20% the sources of ignition including how the distance of ignition sources affects the likelihood of ignition. It will also investigate the frequency and the different types of ignition events e.g. jet fires. Lastly it will look at the probability of ignition on sites and in pipework.
Excess Flow Valve (EFV) Durability
This project will help to inform UK Gas Distribution Network Operators (GDNOs) and wider industry on the long-term suitability of existing Excess Flow Valve (EFV) designs in a future where hydrogen is being distributed in network pipelines. A risk to normal EFV functionality exists in the event that an ignition occurs within the downstream gas installation pipework and this project will help to understand the effectiveness of existing EFV designs to manage this risk identifying any necessary modifications to existing EFV designs where appropriate.
Project Volta
This project will undertake testing on technology for distributed production of low carbon hydrogen from natural gas biogas or other short chain hydrocarbons from waste. Which uses 90% less electricity than electrolysis of water and with 68% lower total energy costs.
The project will support early movers and convert gas from our network into a low carbon hydrogen solution. The compact and modular deployment of the technology enables hydrogen production systems to be installed directly at the energy user's site. These systems convert grid-supplied natural gas to hydrogen on demand eliminating the need for additional infrastructure or on-site hydrogen storage and leaves the rest of the network unaffected
Understanding the value of remote detectors
The statistical ‘value’ (i.e. risk reduction and cost) of remote hydrogen detectors has been determined through statistical based projects as part of the hydrogen heating programme (HHP). The cost has been shown to outweigh the risk however given hydrogen is not a mature heating solution the cost can be justified in response to risk appetite from key stakeholders such as consumers. This risk appetite is assumed. There is currently no analysis (qualitative or quantitative) into consumers attitudes towards the ‘value’ of remote detectors. This project will begin to explore the perception of risk reduction from remote detectors to be used to compliment the statistical based analysis to paint a fuller picture towards the utilisation and crucially the value of remote detectors.
Alternative to overhead/underground electricity cables
This project will consider what role the below ground gas network (new or repurposed) could play in transporting energy over long distances instead of electricity transmission and distribution upgrades. The project will help WWU understand how the use of the current or future gas system would compare to electricity infrastructure for long distance transmission and what factors could influence cross system decision making. The project will also create a comparison tool that allows users to compare case studies.
Hydrogen Impact on NTS Welds
Laboratory and full-scale testing have demonstrated that hydrogen gas affects the fracture performance of pipeline steel welds. To avoid severe knockdown factors stipulated by existing hydrogen pipeline codes mechanical property data from welds tested in high-pressure gaseous hydrogen is required to enable optimised operation of the NTS in hydrogen.
National Gas Transmission have conducted a series of fracture toughness and fatigue crack growth rate tests on a wide selection of pipeline steels and welds representative of those used on the National Transmission System (NTS). A thorough review of the welds tested and how these compare to the wider population of welds in service on the NTS is required to provide further confidence to use this data in pipeline repurposing assessments and for new build design.
High Pressure Venting and Flaring Demonstration for Net-Zero Gases Transportation
National Gas Transmission (NGT) own and operate the UK’s National Transmission System (NTS) transporting natural gas from terminals to end users. NGT have ambitions to repurpose the existing to transport hydrogen and hydrogen blends. Understanding the impact of hydrogen on our existing assets is a key enabler for this.
This project will conduct design of flare for hydrogen and its blends and vent system for hydrogen its blends and carbon dioxide and offline physical testing to provide evidence that hydrogen / hydrogen blends could be flared and vented safely and environmentally in for NTS.
Future Hydrogen Safe Control of Operations (SCO) Procedures
Following the work completed on the policies and procedures project by QEMS WWU have identified the requirement to update and re-vamp the existing Safe control of operations (SCO) procedures used by the network to support delivery of upcoming projects.
Forecaster for Embedded Generation (FEmGE)
Gas networks supply embedded power stations that support the electricity network. These embedded generators can fire up without any warning to GDNs and is causing significant challenges to gas networks.
GDNs are required to submit hourly gas demand nominations to National Gas for each offtake point within specified time deadlines.
Embedded generators are small. They are not included in the UNC’s requirements to notify their GDN of intended offtake activity due to their size being below the threshold for NExAs (network exit agreements). Despite this GDNs must include the demand from these embedded generators in their nominations to ensure there is sufficient gas within their network. This causes numerous challenges for SGN and other GDNs.
GDNs’ current forecasting process does not specifically forecast embedded gas generation and current models do not take inputs from the electricity market. Embedded generators act in a variety of electricity markets yet GDNs don’t have visibility of this demand.
It is anticipated that additional embedded generators will connect in the coming months/years as the demand for electricity increases.The challenge of not having knowledge of embedded generator’s demand and its potential to contribute to a storage shortage has been acknowledged by both EGRIT (Electricity and Gas Resilience Task Group) and NESO (National Energy System Operator). The benefits of creating a notification platform supported by a ML engine are various. Namely to develop an ML-enabled forecasting tool to predict gas demand from embedded generators with increased accuracy as delivery time approaches. In addition to create a notification platform to improve real-time visibility of embedded generator activities within the electricity and gas networks.
This NIA project aims to progress the FEmGE forecasting tool from TRL 1 to TRL 7 delivering a fully functional MVP. NGN will be funding this project to the value of £92333 and SGN to £184666 of the total of £276999.
Application of Functional Blending - Testing a Market-led Approach
Wales & West Utilities has developed a Regional Decarbonisation Pathway to provide an overarching strategic plan for the network in Wales and the South West of England. To deliver that pathway more detailed assessment and planning is required to facilitate the progression of opportunities in particular areas.
In 2023 WWU supported Cadent as the lead partner in the development and delivery of a Functional Blending Specification (FBS) which has progressed the technical understanding of how blending equipment can be practically applied within the context of existing gas network assets (https://smarter.energynetworks.org/projects/NIA_CAD0079/). In 2023 UK Government affirmed their support for network blending whilst networks have continued to develop evidence in support of blending since (Hydrogen blending in GB distribution networks: strategic decision - GOV.UK (www.gov.uk)).
Welding Residual Stress Measurements and Analysis for Gas Pipelines
This project concerns the research into welding residual stress values and the effect that they have on the overall pipework repurposing assessment route described in relevant hydrogen standards. Currently overly conservative values need to be applied for welding residual stresses in any repurposing assessment. This project aims to build evidence on actual and modelled residual stresses seen within the pipelines industries with a focus on natural gas pipelines. As the welding residual stress is a critical aspect of the fracture mechanics assessment any improvements which can be gained would have an overall positive impact on the assessment results.
Hydrogen Rollout Assessment
This project will help WWU to understand considerations for 100% Hydrogen Rollout at a town scale to inform future activity on preparation for repurposing. Areas will be chosen which are representative of different networks housing stock and demographics which will require different approaches and engagement.
Commercial Vehicle Fleet – Development of Total Cost of Operation Model
Decarbonisation of UK transport and the related Zero Emission Vehicle (ZEV) mandate requires companies to transition their commercial vehicle fleets to Battery Electric Vehicles (BEV) or alternative new emerging technologies (e.g. FCEC). As an operational utility network with responsibility for public safety WWU’s fleet undergoes a more challenging and varied range of duty cycles than most commercial fleets includes vehicles that are required to provide on-site power and must be capable of meeting WWU’s statutory duty to respond quickly to Public Reported Escapes.
Within this challenging operational context WWU must deliver a fleet transition at the lowest feasible cost to assure value for money for our customers. This is further complicated by the need to plan the fleet transition while the associated technological and policy landscape continues to evolve in parallel. Although the learnings generated from the project will be specific to WWU’s fleet as a case study they will be applicable to any networks with an operational fleet.
To assure a cost-effective transition and derisk future operations WWU require a Total Cost of Operation (TCO) model. This will be specifically targeted at our particular operational context capable of assessing the costs and capabilities of a range of ZEV options and crucially must be easy for staff to adopt for internal use and update in the future as new data and/or technologies become available.
The purpose of this project is to provide WWU with a TCO model that addresses our specific operational requirements ensuring that plans and investment decisions will be grounded in real-world technology assessments and our operational fleet data.
Probabilistic Fitness-for-Service Assessment of Hydrogen Pipeline Girth Welds
Repurposing of natural gas pipelines made of carbon steel for use with hydrogen blends requires a fitness-for-service analysis as part of the hydrogen use safety case. Girth welds of an unknown quality exist in the Local Transmission System (LTS). In hydrogen service these welds would have a greater susceptibility to fracture failure due to material embrittlement caused by interaction of steel material with hydrogen.
Current inspection methods do not routinely inspect girth welds for defects. Deterministic defect assessment models require the use of conservative assumptions for defect sizes material properties and loading. This can lead to overly pessimistic conclusions about the suitability of pipelines with girth welds for use with hydrogen.
More detailed probability-based assessments are required to reduce the inherent pessimism in deterministic calculation methods. This would provide confidence of the safety and allow for greater use of the LTS with hydrogen and contribute to a quicker and cheaper energy transition for the UK gas network.
Alt Pipe
As the owner of the National Transmission System (NTS) National Gas is committed to responsibly managing our redundant assets in a manner that contributes to a sustainable lower-carbon future by decommissioning them responsibly refurbishing for re-use where viable and/or or changing their purpose where possible. This discovery project will identify decommissioned elements of redundant pipework on the transmission system which are unlikely to be used for refurbishment or part of any wider repurposing of the core network and explore the potential of repurposing these for alternative uses including the storage and/or transmission of electrical energy heat fuels water and data.