- Home
- Projects
Projects
Understanding the value of remote detectors
The statistical ‘value’ (i.e. risk reduction and cost) of remote hydrogen detectors has been determined through statistical based projects as part of the hydrogen heating programme (HHP). The cost has been shown to outweigh the risk however given hydrogen is not a mature heating solution the cost can be justified in response to risk appetite from key stakeholders such as consumers. This risk appetite is assumed. There is currently no analysis (qualitative or quantitative) into consumers attitudes towards the ‘value’ of remote detectors. This project will begin to explore the perception of risk reduction from remote detectors to be used to compliment the statistical based analysis to paint a fuller picture towards the utilisation and crucially the value of remote detectors.
Hydrogen Ignition Risk from Static and Autoignition (HIRSA) Stage 2B – Static Generation experimentation
The key subject of HIRSA stage 2 projects is to understand if using hydrogen in the gas network will result in an increased likelihood of ignition from static discharge generated by particulates in flowing gas. Building on stage 2A stage 2B will provide further experimental testing aimed at determining the absolute difference in electrostatic charge generated identify whether any external factors impact one gas more than the other and to control the factors affecting generation of the charge. The outputs of this work should provide the industry with a better understanding of the potential change in ignition risk when switching from Natural Gas to hydrogen and will also highlight relevant mitigations to manage this risk.
Welding Residual Stress Measurements and Analysis for Gas Pipelines
This project concerns the research into welding residual stress values and the effect that they have on the overall pipework repurposing assessment route described in relevant hydrogen standards. Currently overly conservative values need to be applied for welding residual stresses in any repurposing assessment. This project aims to build evidence on actual and modelled residual stresses seen within the pipelines industries with a focus on natural gas pipelines. As the welding residual stress is a critical aspect of the fracture mechanics assessment any improvements which can be gained would have an overall positive impact on the assessment results.
Hydrogen Rollout Assessment
This project will help WWU to understand considerations for 100% Hydrogen Rollout at a town scale to inform future activity on preparation for repurposing. Areas will be chosen which are representative of different networks housing stock and demographics which will require different approaches and engagement.
Commercial Vehicle Fleet – Development of Total Cost of Operation Model
Decarbonisation of UK transport and the related Zero Emission Vehicle (ZEV) mandate requires companies to transition their commercial vehicle fleets to Battery Electric Vehicles (BEV) or alternative new emerging technologies (e.g. FCEC). As an operational utility network with responsibility for public safety WWU’s fleet undergoes a more challenging and varied range of duty cycles than most commercial fleets includes vehicles that are required to provide on-site power and must be capable of meeting WWU’s statutory duty to respond quickly to Public Reported Escapes.
Within this challenging operational context WWU must deliver a fleet transition at the lowest feasible cost to assure value for money for our customers. This is further complicated by the need to plan the fleet transition while the associated technological and policy landscape continues to evolve in parallel. Although the learnings generated from the project will be specific to WWU’s fleet as a case study they will be applicable to any networks with an operational fleet.
To assure a cost-effective transition and derisk future operations WWU require a Total Cost of Operation (TCO) model. This will be specifically targeted at our particular operational context capable of assessing the costs and capabilities of a range of ZEV options and crucially must be easy for staff to adopt for internal use and update in the future as new data and/or technologies become available.
The purpose of this project is to provide WWU with a TCO model that addresses our specific operational requirements ensuring that plans and investment decisions will be grounded in real-world technology assessments and our operational fleet data.
Probabilistic Fitness-for-Service Assessment of Hydrogen Pipeline Girth Welds
Repurposing of natural gas pipelines made of carbon steel for use with hydrogen blends requires a fitness-for-service analysis as part of the hydrogen use safety case. Girth welds of an unknown quality exist in the Local Transmission System (LTS). In hydrogen service these welds would have a greater susceptibility to fracture failure due to material embrittlement caused by interaction of steel material with hydrogen.
Current inspection methods do not routinely inspect girth welds for defects. Deterministic defect assessment models require the use of conservative assumptions for defect sizes material properties and loading. This can lead to overly pessimistic conclusions about the suitability of pipelines with girth welds for use with hydrogen.
More detailed probability-based assessments are required to reduce the inherent pessimism in deterministic calculation methods. This would provide confidence of the safety and allow for greater use of the LTS with hydrogen and contribute to a quicker and cheaper energy transition for the UK gas network.
Alt Pipe
As the owner of the National Transmission System (NTS) National Gas is committed to responsibly managing our redundant assets in a manner that contributes to a sustainable lower-carbon future by decommissioning them responsibly refurbishing for re-use where viable and/or or changing their purpose where possible. This discovery project will identify decommissioned elements of redundant pipework on the transmission system which are unlikely to be used for refurbishment or part of any wider repurposing of the core network and explore the potential of repurposing these for alternative uses including the storage and/or transmission of electrical energy heat fuels water and data.
The Potential of Biomethane to Accelerate the Decarbonisation of UK HGVs
The following is a proposed outline for a report on the decarbonisation benefits and potential of biomethane in the UK Road Haulage sector.
The report will position biomethane as:
- A complimentary technology to zero tailpipe emission vehicles that offers faster decarbonisation potential due to the near-term infrastructure scalability of the technology and the suitability for long distance and non-fixed route logistics.
- A cost-effective way to reduce Carbon emissions by over 84% over the next 15-20 years whilst zero tailpipe emission technologies are developed and the supporting infrastructure is deployed.
- An enabler to the transition to zero tailpipe emission vehicles by offering reduced carbon abatement costs that in turn can generate funds to invest in zero emissions infrastructure and vehicles.
It will serve as a reference document for discussions with industry stakeholders governments and regulators.
Digital Decommissioning of Large-Scale Equipment
As the Gas Transmission network responds to a changing energy system from drivers including the transition to net zero and to changes in supply and demand we are required to decommission our large site based assets in certain locations. Decommissioning is a multifaceted endeavour that goes beyond the conclusion of an asset’s lifespan and encompasses a complex deconstruction process. This project will implement an innovative AI tool to help National Gas manage decommissioning to drive benefits such as increasing the accuracy of cost estimation ways to reduce carbon emissions identify re-use potential and lower the overall time taken to decommission.
Energy Plan Translator
Develop a flexible and adaptable toolset for the rapid analysis of Local Area Energy Plans (LAEPs). This will convert qualitative statements to quantified metrics and identify key network specific planning parameters.
Integrity Management of Gaseous Carbon Dioxide Pipelines
Existing defect assessments and repair methodologies are aligned with the P/11 P/20 and PM/DAM1 management procedures and are adopted to inspect assess and repair the pipelines for defects and take suitable measures to reduce them. However the scope and applicability of these assessment and repair methodologies in the presence of gaseous phase carbon dioxide remain uncertain. The key challenges which the project aims to address are:
- Will existing repair techniques such as epoxy shell welded shells composite wraps gouge dressing etc. be suitable for transmission of gaseous phase carbon dioxide?
- What are the different defects we may encounter or consider hazardous in the presence of carbon dioxide? What are the impacts of carbon dioxide on each defect type? And how much does water/corrosion exacerbate this?
- Have the mechanisms of failure for each defect type changed after introducing carbon dioxide?
- Can we implement the assessment and repair methodologies safely? Are the techniques safe and suitable for the pipeline operations and maintenance teams?
The project seeks to answer the above in addition to understanding the types and extent of repairs across the NTS and review the impact of carbon dioxide on the effectiveness of these inspection assessment and mitigation technologies.
Future Hydrogen Safe Control of Operations (SCO) Procedures
Following the work completed on the policies and procedures project by QEMS WWU have identified the requirement to update and re-vamp the existing Safe control of operations (SCO) procedures used by the network to support delivery of upcoming projects.
Forecaster for Embedded Generation (FEmGE)
Gas networks supply embedded power stations that support the electricity network. These embedded generators can fire up without any warning to GDNs and is causing significant challenges to gas networks.
GDNs are required to submit hourly gas demand nominations to National Gas for each offtake point within specified time deadlines.
Embedded generators are small. They are not included in the UNC’s requirements to notify their GDN of intended offtake activity due to their size being below the threshold for NExAs (network exit agreements). Despite this GDNs must include the demand from these embedded generators in their nominations to ensure there is sufficient gas within their network. This causes numerous challenges for SGN and other GDNs.
GDNs’ current forecasting process does not specifically forecast embedded gas generation and current models do not take inputs from the electricity market. Embedded generators act in a variety of electricity markets yet GDNs don’t have visibility of this demand.
It is anticipated that additional embedded generators will connect in the coming months/years as the demand for electricity increases.The challenge of not having knowledge of embedded generator’s demand and its potential to contribute to a storage shortage has been acknowledged by both EGRIT (Electricity and Gas Resilience Task Group) and NESO (National Energy System Operator). The benefits of creating a notification platform supported by a ML engine are various. Namely to develop an ML-enabled forecasting tool to predict gas demand from embedded generators with increased accuracy as delivery time approaches. In addition to create a notification platform to improve real-time visibility of embedded generator activities within the electricity and gas networks.
This NIA project aims to progress the FEmGE forecasting tool from TRL 1 to TRL 7 delivering a fully functional MVP. NGN will be funding this project to the value of £92333 and SGN to £184666 of the total of £276999.
Application of Functional Blending - Testing a Market-led Approach
Wales & West Utilities has developed a Regional Decarbonisation Pathway to provide an overarching strategic plan for the network in Wales and the South West of England. To deliver that pathway more detailed assessment and planning is required to facilitate the progression of opportunities in particular areas.
In 2023 WWU supported Cadent as the lead partner in the development and delivery of a Functional Blending Specification (FBS) which has progressed the technical understanding of how blending equipment can be practically applied within the context of existing gas network assets (https://smarter.energynetworks.org/projects/NIA_CAD0079/). In 2023 UK Government affirmed their support for network blending whilst networks have continued to develop evidence in support of blending since (Hydrogen blending in GB distribution networks: strategic decision - GOV.UK (www.gov.uk)).
Navigator Project
Situation:
As National Grid ESO transitions to the NESO it will take on the role of Regional Energy Strategic Planners which will bring a focus on the alignment of Local Area Energy Plans and distribution network planning.
Complication:
Current regional distribution network future energy scenarios are produced by electricity distribution networks. Gas distribution networks do not have an equivalent activity Accordingly regional and local area energy planning in not informed by a balanced consideration of all energy vectors.
Solution:
An agile and easy to use Whole Energy Systems Pathway (WESP) tool with detailed temporal and spatial investment planning capabilities to enable a regional whole energy system planning capability which informs gas network planning as well as inform national regional and local planners in an objective evidence based. way
Cominglo – Blended CV Measurement Point
This project seeks to improve the accuracy of CV measurement in gas networks which distribute blended gas streams. Element Digital Engineering will address this by first studying the physics of gas blending in the gas network using Computational Fluid Dynamics (CFD). A wide range of simulations will enable the effects of different designs and mixing technologies to be understood in relation to the various gases under consideration. The predictions of these CFD studies will be validated through the design and development of a rig to simulate blending in the network. The overall results of these studies will be used to develop a tool that can be deployed within the gas networks to facilitate the accurate prediction of co-mingling and subsequent CV measurement points supporting the design of blending systems.
H2 Housing Design
This project will explore ventilation and explosion relief requirements for housing currently used on the gas network for pressure regulating installations (PRIs). Housings currently provide security from a range of factors from weather to vandalism while also providing the necessary relief requirements in the event of an emergency. The understanding of these requirements for Natural Gas has been developed however work conducted in the IGEM TD/13 hydrogen supplement did not fully address whether these design specifications are suitable for use with Hydrogen. This multi-stage project will first explore the design specifications listed in industry standards (IGEM/TD/13 GIS/PRS/35 SGN/SP/CE/10 etc) and understand which of these may be appropriate and which may require redesign. The latter stage of this project will take the design specifications deemed to be unsuitable for use with hydrogen and conduct testing to develop revised design specifications which would provide the necessary relief requirements.
Pathfinder Enhancements
This project will update the Pathfinder tool to improve functionality and reflect more current underlying data. Use of the tool developed in this project should result in better choices regarding investment in energy saving measures
Determining Future Energy Demand of B&R Team Vans with Full On-Board Power
Wales & West Utilities is undertaking a major programme of change to support decarbonisation and deliver a Net Zero gas network. Decarbonisation of the vehicle fleet is an integral component of that programme.
WWU operates a fleet of nearly 1400 commercial vehicles the majority of these being vans up to 3.5 tonnes GVW. Our fleet – mostly diesel-fuelled - plays a crucial role in providing a safe and efficient service. In addition to our vehicle fleet WWU operates ~ 900 items of mobile plant including mini diggers and a wide range of trailers many of which are specialised.
WWU vans carry a wide range of power-operated tools and equipment some of this currently being powered by hydrocarbon fuels some by electricity and some by compressed air. Approximately a third of our van fleet (~400 units) is equipped with ‘full on-board power’ – a compressor and generator mounted under the van floor and mechanically driven by the diesel engine and operating as a source of on-site power.
This group of vehicles primarily supports below-ground network repair and replacement activity: it is a significant energy consumer so to help us understand how we can make an operationally cost-effective transition to zero emissions it is the on-site energy requirements of the tools and equipment powered by this group that Cenex will evaluate for this project. This evaluation will provide information which can take account of (and feed in to) a range of different scenarios for the fleet in the future such as changes to the number and type of vans allocated to particular teams and projects.
H2 Rail
This project will explore the feasibility of integrating hydrogen train refuelling infrastructure to support the development of a hydrogen rail network. This has particular relevance to our network as some of the UK’s hardest to electrify rail routes are situated in Wales and South West England. The project will focus on these hard to electrify routes exploring H2’s potential role in enabling their decarbonisation. If successful this project can help the WWU network to become a proving ground for real-world delivery of impactful H2 rail technology. It is expected to provide information which can be used in planning strategic hydrogen pipeline routes and network repurposing plans and support regional energy planning.