Projects
Project Remo2val
The use of greener gases such as biomethane are an important part of the UK’s transition to net zero. Underground storage sites for biomethane are critical for balancing seasonal supply and demands for energy. However increased levels of oxygen in biomethane can lead to corrosion of assets in wet gas conditions compromising the integrity of storage facilities. This project will assess in a comparative analysis the technical and economic viability of advanced catalytic and adsorption technologies to reduce oxygen levels in biomethane with corrosion inhibitors to ensure the integrity and longevity of critical storage infrastructure.
Gas Inhibitors for Hydrogen Pipelines - Phase 3
The Phase 3 project on gas inhibitors for hydrogen pipelines aims to translate lab-scale findings into practical applications for the UK’s National Transmission System. It focuses on validating the effectiveness of oxygen and alternative inhibitors in mitigating hydrogen embrittlement addressing unresolved safety and integrity concerns from previous phases and designing a plan for safe integration into existing infrastructure. The project includes physical demonstration planning and network design to assess technology implementation.
Hydrogen Combustion Engine Feasibility Study
This project will see Cenex deliver a feasibility study on hydrogen internal combustion engines (H2ICE) as an alternative to diesel and Fuel Cell Electric Vehicle (FCEV) within WWU’s operational fleet. This project comprises three distinct work packages (WPs) each feeding into a holistic assessment of H2ICE applicability across WWU’s vehicle assets. Cenex will apply its expertise in fleet decarbonisation alternative fuel technologies legislative policy analysis and techno-economic modelling to meet WWU’s scope requirements. All outputs will be suitable for internal strategic review and for sharing externally with partners and stakeholders.
Blending Management Approach – Phase 2
The conversion of the National Transmission System into a hydrogen transmission network has been widely discussed and it is recognised that blending of hydrogen and natural gas in the network is an important intermediary step towards that goal. It is therefore important to understand how the NTS will operate with a mix of natural gas and variable blends up to 20% hydrogen.
The Blending Management Approach (BMA) Phase 2 project will explore the operational safety and strategic implications of introducing low-level hydrogen blends into the National Transmission System (NTS) with a particular focus on storage interactions emergency response scenarios and long-term network management strategies. This phase aims to deepen understanding of how hydrogen blends interact with existing infrastructure and protocols.
Sustainable Vehicle Transport
The Sustainable Vehicle Transport (SVT) feasibility study project will undertake a green gas refuelling study specific to SGN’s network areas in Scotland and Southern incorporating biomethane in the form of bio-CNG and the potential for a future hydrogen option. Along with heat transport is a key sector to decarbonise on the journey to net zero. Battery electric vehicles are well suited to small vehicles but for heavy goods vehicles (HGV) and larger commercial vehicles (LCV) like the type that make up the majority of SGN’s operational fleet this may not be the most appropriate technology given the range and on-board power requirements.
The Warmth of Community
This project will conduct market research on available or soon to be available hybrid products for discussion and presentation back to WWU and WW Housing to choose a preferred solution for the properties identified that are suitable to trial the equipment in. The project will provide networks with demand data and look to aggregate this over WW Housing stock to understand wider impact on gas networks if this was considered a viable option to decarbonise housing stock.
Clean Power Flexibility Investigation
Clean Power 2030 (CP2030) aims for a fully decarbonised electricity system using unabated gas only as backup. This introduces an important challenge: how can the gas transmission network remain viable and deliver flexibility during extreme demand events despite not being utilised most of the time? This project aims to understand how to sustain the gas network technically and economically in a low average high peak demand future focusing on the interaction between gas and electricity systems.
Gas Transmission Data Sharing Infrastructure
This project will entail a feasibility study to assess the viability of developing a secure scalable and interoperable data sharing infrastructure for National Gas Transmission (NGT) supporting regulatory compliance stakeholder access and alignment with NESO’s DSI initiative. The main objective is to gain a better understanding of how we share data currently and how this will change moving forward both within established participants and enabling new participants and stakeholders to benefit from National Gas’s data. This will support the wider NESO led DSI initiative. Using two NGT data systems as a use case for this study
The Role of Gas Distribution Networks in Power Generation
This project will assess the current and future role of gas distribution networks (GDNs) in supporting dispatchable electricity generation within a decarbonising UK energy system. It will identify method(s) for GDN operators to obtain accurate gas usage data from existing generation connections and develop future scenarios to inform network planning and investment.
HyNTS Corrosion
The National Transmission System (NTS) pipelines employ a number of external corrosion barrier coatings primarily coal tar enamel and fusion bonded epoxy (FBE). Cathodic protection is deployed on the network to mitigate for coating failure. Additionally there are a range of pipeline steels that are used in both above ground buried pipework both stainless and carbon steels of various grades.
Following the previous NIA project: Research the Impact of Hydrogen on CP & Degradation of Coatings (NIA NGGT0191) the HSE have recommended follow-on testing to fully explore the impact of hydrogen permeation through steel pipelines on corrosion protection systems.
Additionally the impact of hydrogen on all credible pipeline corrosion mechanisms is to be considered to understand whether current assumptions with regards corrosion rates are valid for hydrogen pipelines.
Hydrogen Environment Testing of Girth Welds Phase 2 - Constant Load Testing
Previous testing carried out under NIA has outstanding gaps that require further testing to close. Completing the additional testing will confirm actual fracture toughness values to be used and the corresponding J value from the crack growth resistance curve. The project outputs are required and will be used to progress design specification and procurement processes for hydrogen major projects. The results can also be applied for repurposing assessments.
WWU Intermediate Scale Hydrogen Storage Evaluation (HyWISE)
As the hydrogen economy grows the need for flexible decentralised intermediate-scale hydrogen storage is becoming increasingly evident. While large-scale underground hydrogen storage in salt caverns and depleted gas fields will play a crucial role in long-term energy security distributed intermediate scale storage solutions are essential to bridge the gap between production and end-use ensuring reliability efficiency and resilience in hydrogen supply chains during the scale-up of the hydrogen economy. Decentralised storage facilities allow for hydrogen hubs to emerge in urban and industrial areas reducing reliance on long-distance transport infrastructure and supporting regional hydrogen economies.
A key unknown is whether the land use and geology of Wales and South West England can support intermediate-scale underground hydrogen storage (UHS) technologies. This project aims to map and assess potential storage sites within the WWU region aligning with broader energy infrastructure plans—including hydrogen and gas pipelines electricity networks industrial demand and renewable energy integration. The project will use WWU’s geology and geography as a case study and demonstrate how UHS options can support wider energy infrastructure in the region and beyond as well as future project plans. For this reason the outputs are expected to be of value to all networks.
To evaluate the feasibility of these storage solutions the University of Edinburgh will analyse rock property and strength data from publicly accessible British Geological Survey (BGS) datasets developing new insights into the engineering suitability of the region’s subsurface for hydrogen storage.
Hydrogen Refuelling from the Network
Wales & West Utilities (WWU) is undertaking a project to develop a thorough understanding of the technical and economic requirements for integrating hydrogen refuelling stations (HRS) into the existing gas network. The main aim is to enable the supply of ‘on-spec’ hydrogen for fuel cell electric vehicles (FCEVs) and hydrogen internal combustion engines (HICEs) from the heat-grade hydrogen currently delivered by the network. This involves analysing the types of contaminants present in grid hydrogen pinpointing the purification technologies needed and assessing the infrastructure requirements for compression chilling and storage to deliver hydrogen at the target pressures of 350 and 700 bar.
HyNTS Operational Methodologies - Valve Performance Assessments
This project aims to assess and enhance the hydrogen readiness of ball valves within the (NTS) by conducting maintenance strategy evaluation with material performance analysis. It involves reviewing current valve operations diagnostics and OEM maintenance guidance alongside a literature review of commonly used valve materials to understand their behaviour under hydrogen exposure. The project valve performance testing and finite element analysis of existing valve designs to evaluate structural integrity. Findings from these activities will provide actionable recommendations for updating NGT’s valves maintenance strategies diagnostic tools and design standards to support safe and efficient hydrogen service deployment
Novel Unified Viewer for NGT Network Performance Twin
As part of the National Gas Network Performance Twin program this project is designed to demonstrate a scalable digital twin platform focused on improving infrastructure resilience supporting hydrogen integration and addressing climate adaptation across the National Transmission System (NTS). This initiative integrates three strategic components: Collaborative Visual Data Twin (CVDT) – a 3D BIM-based digital twin platform that visualises and monitors asset performance in real time. HyNTS Dataset Automation – a structured automated geodatabase that supports hydrogen readiness assessments and asset integrity modelling. Flood Twin – a predictive flood simulation model that enables scenario-based risk analysis and resilience planning for Above Ground Installations (AGIs).
Risk of Microbial Corrosion due to Hydrogen Transportation
National gas pipeline systems rely heavily on protective coatings and cathodic protection to prevent corrosion and ensure long-term integrity. Coatings act as the primary barrier against environmental exposure while cathodic protection—typically using sacrificial anodes or impressed current systems—supplements this by mitigating electrochemical reactions that cause metal degradation. The introduction of hydrogen into these pipelines as part of decarbonization efforts presents new challenges. Hydrogen can permeate coatings and accelerate corrosion processes especially in the presence of certain microbes. Microbiologically induced corrosion (MIC) driven by bacteria such as sulphate-reducing bacteria (SRB) can be exacerbated by hydrogen which some microbes use as an energy source. This interaction may compromise both the coating and cathodic protection systems necessitating advanced materials and monitoring strategies to maintain pipeline safety and performance in a hydrogen-integrated future.
Impact of Hydrogen and on NTS Oils & Greases – Phase 2
Phase 1 of the project compiled a list of oils and greases considered to be gas-facing on the NTS along with identifying functional and material property requirements of these products. Proposed standards and testing methodologies were also outlined to inform the next phase of the project. In Phase 2 the project will proceed with additional required activities to ensure the safe utilisation of NTS oils/greases in a hydrogen pressurised environment. These activities include laboratory testing for lubricants and functional testing for sealants to assess degradation and performance of these products in hydrogen. Subsequently requirements for in-service monitoring will be identified.
Hydrogen Ignition Risk from Static and Autoignition (HIRSA) – Stage 3
The HIRSA programme is assessing ignition risks for the transition to hydrogen with Stage 3 focusing on high pressure static risks including shockwave ignition and rapid adiabatic compression. This research supports the safe integration of hydrogen into gas networks.
Development of Technical Readiness for Bends and Tees
Hydrogen design codes require fracture mechanics based design and qualification for high stress service. Procurement of a number of Long Lead Items (LLI) is required to construct commission and operate hydrogen networks. A number of these LLIs including induction bends and barred tees remain at a low technical readiness.
This project will carry out fracture toughness testing in a hydrogen environment to increase the technical readiness support the supply chain and achieve operational schedules.
FutureGrid CO2
FutureGrid CO2 is the final phase of a suite of Carbon Dioxide projects looking at how National Gas can repurpose parts of its network to transport gaseous-phase Carbon Dioxide safely. What started out as literature reviews and feasibility studies will turn into physical testing and demonstration. National Gas will be using its world-leading FutureGrid facility to demonstrate how Carbon Dioxide will flow through its pipes delivering on its promise to further use this facility after our successful FutureGrid SIF Beta projects. We will also be completing carbon dioxide venting ruptures and real-time impurity corrosion tests- all of which are underexplored.