Whole energy systems
Biomethane feedstock mapping and strategic growth planning study
This project constitutes a GB-wide analysis of biomethane feedstock arisings including location determination of quality and composition of each feedstock type and biomethane production potential. Arisings will be quantified to county-level. Mapping software will be used to determine feedstock hotspots and alignment with the grid will be considered. The results of these analyses will be combined to consider how and where sustainable biomethane growth can best be achieved.
Unlocking the role of nuclear in low carbon hydrogen and heat
This project constitutes a research study which will explore how nuclear energy can support a whole system energy transition by providing for the energy requirements of low-carbon hydrogen and heat networks within regions where renewable energy potential is relatively low. These are areas where hydrogen demand will need to be met by imports unless hydrogen production methods can be increased and diversified.
Maximising the use of a decommissioned network
This project constitutes a research study exploring innovative opportunities to repurpose decommissioned gas pipelines and associated assets to support future energy systems and critical infrastructure needs.
By exploring diverse repurposing options beyond hydrogen and carbon dioxide it is hoped that it will be possible to identify potential growth areas for gas pipeline assets that in some areas may otherwise become stranded. The study will include a review of economic viability technical feasibility and regulatory considerations for any identified options.
Green Gas Access
Green Gas Access will define tools to improve how green gas is managed across UK distribution networks supporting net-zero goals. With fossil fuels still expected to dominate the energy mix by 2050 we must ensure resilient supply and avoid capacity loss as we integrate decentralised sources like biomethane. The solution is to enable real-time network operation including dynamic supply modelling scenario planning and technology deployment. Key outcomes include: improved green gas injection control better asset use onboarding new suppliers efficiently and supporting the transition to low-carbon systems through coordinated green gas storage and power-to-gas operation.
Navigator Project
Situation:
As National Grid ESO transitions to the NESO it will take on the role of Regional Energy Strategic Planners which will bring a focus on the alignment of Local Area Energy Plans and distribution network planning.
Complication:
Current regional distribution network future energy scenarios are produced by electricity distribution networks. Gas distribution networks do not have an equivalent activity Accordingly regional and local area energy planning in not informed by a balanced consideration of all energy vectors.
Solution:
An agile and easy to use Whole Energy Systems Pathway (WESP) tool with detailed temporal and spatial investment planning capabilities to enable a regional whole energy system planning capability which informs gas network planning as well as inform national regional and local planners in an objective evidence based. way
Achieving Future Hydrogen Demand
This project constitutes a research study assessing the future demand for hydrogen across SGN regions and the role SGN infrastructure could play in facilitating access to hydrogen.
As the UK transitions to a low-carbon energy future gas networks must consider how strategic utilisation of existing assets can be realised. Using SGN’s extensive gas network to carry hydrogen instead of natural gas would be a major step towards decarbonisation. This repurposing necessitates an understanding of both the technical feasibility of repurposing pipelines to carry hydrogen and future hydrogen demand requirements.
Decentralised System Resilience
This project constitutes a research study investigating the opportunities for gas network infrastructure to support storage and balancing in a decentralised UK energy system. The research will consider how a decentralised system might look in the UK from now until 2030 and onto 2050. An evaluation will be made of how other countries are approaching decentralisation identifying examples the UK could draw on. Consideration will be given to how grid balancing will be achieved across various scenarios of peak demand and particular geographic locations in the UK and what challenges and opportunities this presents to gas networks.
Carbon Networks
As the UK transitions to a low-carbon energy future gas networks must consider how strategic utilisation of existing assets can be realised. GDNs must also consider adjacent markets such as CCUS and its role in the supply chain now and in the future. The project will take a pragmatic approach to provide SGN with an assessment of the role of the gas network in the growing UK CCUS market
CO2 Capture and Methanation Feasibility Study
CO₂ utilisation in the UK remains technically and commercially uncertain. Dispersed emitters and biogenic sources are largely excluded from industrial CCUS clusters leaving a gap in scalable cost-effective carbon management solutions. This project will conduct a Desktop feasibility study covering SGN’s operational regions and local emitters within ~30 mile radius of candidate biomethane sites.
- Stakeholder and vendor engagement with technology providers
- Technical and economic modelling of capture and utilisation systems including mass and energy balances CAPEX/OPEX estimates and sensitivity analysis on CO₂ and hydrogen pricing.
- Local market assessment to identify potential CO₂ emitters and offtakes within 30 miles of candidate biomethane or EfW sites.
Development roadmap defining next steps funding opportunities and conditions required to progress to demonstration phase.
Innovation Highway - Phase 2
The Innovation Highway phase 2 project will utilise AI and machine-learning to optimise the full innovation value chain. The platform will develop a minimum commercial product to help facilitate collaboration amongst networks and other sectors such as water companies so they can innovate together. AI-empowered algorithms will simplify the identification mapping assessment and selection of problems and ideas reducing manual processing time and enhancing effective decision making; this will support identifying and prioritising projects that will deliver the highest benefits. The platform will also help networks automate the development of cost benefit analysis.
Quantum optimisation for future gas network design
This project is a first of its kind exploration into the applicability of quantum-inspired optimisation to improve and accelerate modelling of future gas transmission configurations and whole-systems planning. It will assess use cases where these techniques can enhance scenario coverage integrate multiple additional energy vectors address current computational limitations in modelling hydrogen and CO2 networks and improve granularity of planning outputs. By engaging National Gas and supported by NESO the project will identify where quantum-inspired methods offer the greatest system-wide benefit culminating in a prioritised use case and roadmap for Alpha-phase development.