Whole energy systems
Carbon Networks
As the UK transitions to a low-carbon energy future gas networks must consider how strategic utilisation of existing assets can be realised. GDNs must also consider adjacent markets such as CCUS and its role in the supply chain now and in the future. The project will take a pragmatic approach to provide SGN with an assessment of the role of the gas network in the growing UK CCUS market
Achieving Future Hydrogen Demand
This project constitutes a research study assessing the future demand for hydrogen across SGN regions and the role SGN infrastructure could play in facilitating access to hydrogen.
As the UK transitions to a low-carbon energy future gas networks must consider how strategic utilisation of existing assets can be realised. Using SGN’s extensive gas network to carry hydrogen instead of natural gas would be a major step towards decarbonisation. This repurposing necessitates an understanding of both the technical feasibility of repurposing pipelines to carry hydrogen and future hydrogen demand requirements.
Navigator Project
Situation:
As National Grid ESO transitions to the NESO it will take on the role of Regional Energy Strategic Planners which will bring a focus on the alignment of Local Area Energy Plans and distribution network planning.
Complication:
Current regional distribution network future energy scenarios are produced by electricity distribution networks. Gas distribution networks do not have an equivalent activity Accordingly regional and local area energy planning in not informed by a balanced consideration of all energy vectors.
Solution:
An agile and easy to use Whole Energy Systems Pathway (WESP) tool with detailed temporal and spatial investment planning capabilities to enable a regional whole energy system planning capability which informs gas network planning as well as inform national regional and local planners in an objective evidence based. way
Decentralised System Resilience
This project constitutes a research study investigating the opportunities for gas network infrastructure to support storage and balancing in a decentralised UK energy system. The research will consider how a decentralised system might look in the UK from now until 2030 and onto 2050. An evaluation will be made of how other countries are approaching decentralisation identifying examples the UK could draw on. Consideration will be given to how grid balancing will be achieved across various scenarios of peak demand and particular geographic locations in the UK and what challenges and opportunities this presents to gas networks.