Projects
CO2 Capture and Methanation Feasibility Study
CO₂ utilisation in the UK remains technically and commercially uncertain. Dispersed emitters and biogenic sources are largely excluded from industrial CCUS clusters leaving a gap in scalable cost-effective carbon management solutions. This project will conduct a Desktop feasibility study covering SGN’s operational regions and local emitters within ~30 mile radius of candidate biomethane sites.
- Stakeholder and vendor engagement with technology providers
- Technical and economic modelling of capture and utilisation systems including mass and energy balances CAPEX/OPEX estimates and sensitivity analysis on CO₂ and hydrogen pricing.
- Local market assessment to identify potential CO₂ emitters and offtakes within 30 miles of candidate biomethane or EfW sites.
Development roadmap defining next steps funding opportunities and conditions required to progress to demonstration phase.
Network Intelligence: Bio- Methane Retractable Probe
The Retractable Probe directly tackles a critical constraint in biomethane integration: the disconnect between modelled and actual network capacity during low-demand periods. By enabling real-time high-resolution flow data from retrofitted PRIs this innovation unlocks latent capacity allowing for more confident dynamic flow commitments. With proven international precedents and a low-cost scalable design the probe offers a transformative step toward decarbonising the UK’s gas infrastructure—turning data scarcity into actionable intelligence and accelerating the transition to a greener more resilient energy system.
HyProximity
This project aims to develop a robust evidence-based framework to support the introduction of standardised separation distance tables for 100% hydrogen similar in format and function to those in IGEM/TD/3 for natural gas and hydrogen blends. This will address a gap in current standards for hydrogen. The Institute of Gas Engineers and Managers (IGEM) are providing resource to support the project and to update any necessary standards.
GDN Gas Quality Forecasting
This project aims to develop a means of forecasting gas quality at the NTS offtakes which will support current arrangements for target Calorific Value (CV) setting allowing networks to more accurately provide target CVs to biomethane producers and reducing sudden changes in targets sent to biomethane sites which can cause operational problems. Going forward gas quality information on CV and potentially Wobbe will also assist the GDNs in managing hydrogen blend.
Hybrid Heat Systems (HHS) Acceleration Route
Project will deliver strategic analysis and recommendations to support the accelerated adoption of Hybrid Heat Systems (HHS) in GB. This includes assessing technology options commercial models stakeholder perspectives and system integration pathways. The work will result in actionable insights clear positioning of HHS within the wider decarbonisation strategy.
LISTEN – Local Insights Supporting Transparent Energy Networks
The LISTEN (Local Insights Supporting Transparent Energy Networks) project aims to create a scalable data-led approach to understanding and building social consent for the energy transition. LISTEN integrates AI-driven tools place-based engagement and co-designed dashboards to help energy networks plan with communities not just for them.
The platform brings together four core elements:
- Regional Dashboards: Visualising insights by geography topic and demographics to inform planning and engagement strategies.
- Multi-Source Data Capture: Synthesising local news social media planning documents and community events for a holistic view of local feeling.
- Voice-Enabled Surveys: Capturing authentic community sentiment in people’s own words with AI sentiment analysis assessing tone confidence and emotion.
- Tailored Recommendations: Providing SGN and partners with actionable insights and engagement strategies aligned with Ofgem’s fairness and consumer-centric priorities.
Standardising Grid Entry Unit
The UK’s biomethane sector faces challenges due to the diverse and non-standardized grid entry requirements across different Gas Distribution Networks (GDNs). This variability leads to increased costs complexity and lead times for biomethane projects hindering the industry’s growth and efficiency.