- Home
- Publishers
- Future Energy Networks
Future Energy Networks
1 - 20 of 78 results
-
-
1 mol% Oxygen exemption for the NTS
This study builds on previous technical work undertaken to support the 1 mol% oxygen Gas Safety Management Regulations (GSMR) amendment up to 38 barg. The work plan was targeted to focus on aspects that are more pertinent to the National Transmission System (NTS), including information from the current developments for European standards and supporting information from published studies on the impact of oxygen. The scope covered:
- Integrity – focusing on changes to corrosion rates and developing the understanding that increased oxygen content may have on the different factors that impact on corrosion rates.
- Measurement – considering the effect of higher oxygen content on the ability of the different analysers and equipment to measure accurately.
- Gas quality – reviewing the impact on key gas quality parameters and considering the potential impact on trace components that may be present.
- Pipeline “dryness” – investigating the impact of water dew point and water content and the effect of increased oxygen.
- Gas mixing – recognising that the flow from biomethane injection will in most cases be lower than the main pipeline flow, deduce if higher oxygen content gas could be transported long distances through the pipeline network.
- Gas storage – building on available information to assess if higher oxygen content impacts on gas storage.
- Gas utilisation – identifying if there are end users that could be significantly impacted by elevated oxygen limits.
- Intermediate limits – considering if an intermediate limit would be preferential.
The scope was developed to provide technical evidence to understand the implications for the NTS recognising that this introduces additional factors that were not considered in the previous studies.
-
-
-
Achieving Future Hydrogen Demand
This project constitutes a research study assessing the future demand for hydrogen across SGN regions and the role SGN infrastructure could play in facilitating access to hydrogen.
As the UK transitions to a low-carbon energy future, gas networks must consider how strategic utilisation of existing assets can be realised. Using SGN’s extensive gas network to carry hydrogen instead of natural gas would be a major step towards decarbonisation. This repurposing necessitates an understanding of both the technical feasibility of repurposing pipelines to carry hydrogen, and future hydrogen demand requirements.
-
-
-
Air Ingress in Multi Occupancy Buildings (MOBs)
This project will help to inform UK Gas Distribution Network Operators (GDNOs) and wider industry on the impact of the potential for air ingress into gas-conveying pipework in MOBs. The mechanisms for air ingress into gas-conveying pipework have been shown to be gas agnostic, though this project will focus on impacts specific to future hydrogen distribution to MOBs.
-
-
-
Alt Pipe
As the owner of the National Transmission System (NTS), National Gas is committed to responsibly managing our redundant assets in a manner that contributes to a sustainable, lower-carbon future by decommissioning them responsibly, refurbishing for re-use where viable, and/or or changing their purpose where possible. This discovery project will identify decommissioned elements of redundant pipework on the transmission system which are unlikely to be used for refurbishment or part of any wider repurposing of the core network, and explore the potential of repurposing these for alternative uses including the storage and/or transmission of electrical energy, heat, fuels, water and data.
-
-
-
Alternative to overhead/underground electricity cables
This project will consider what role the below ground gas network (new or repurposed) could play in transporting energy over long distances, instead of electricity transmission and distribution upgrades. The project will help WWU understand how the use of the current or future gas system would compare to electricity infrastructure for long distance transmission, and what factors could influence cross system decision making. The project will also create a comparison tool that allows users to compare case studies.
-
-
-
Application of Functional Blending - Testing a Market-led Approach
Wales & West Utilities has developed a Regional Decarbonisation Pathway to provide an overarching strategic plan for the network in Wales and the South West of England. To deliver that pathway, more detailed assessment and planning is required to facilitate the progression of opportunities in particular areas.
In 2023, WWU supported Cadent as the lead partner in the development and delivery of a Functional Blending Specification (FBS) which has progressed the technical understanding of how blending equipment can be practically applied within the context of existing gas network assets (https://smarter.energynetworks.org/projects/NIA_CAD0079/). In 2023, UK Government affirmed their support for network blending whilst networks have continued to develop evidence in support of blending since (Hydrogen blending in GB distribution networks: strategic decision - GOV.UK (www.gov.uk)).
-
-
-
Assessing Energy Impacts via Thermal Analysis
The project aims to use a vehicle-mounted thermal camera and Artificial Intelligence (AI) to detect heat loss from homes on a city-wide scale. The data will be used to assess the condition of a property regarding its ability to retain heat and provide tailored recommendations addressing insulation problems. This critical first step allows for better targeting of necessary retrofits and offers a scientifically measured alternative or complementary approach to traditional EPC.
-
-
-
Asset Compatibility Assessment Tool for Transmission
Following completion of Phase 2 of the H21 Hydrogen Ready Components project, this project will look to extend the methodology developed under this project to encompass the assessment of assets operating above 7 barg. The assessment tool will be incorporated into the LTS Futures blueprint methodology for repurposing existing Natural Gas transmission assets to hydrogen. The scope will include transmission assets above 7 barg and up to the maximum transmission pressure of 94 barg and will focus on the conversion to 100% hydrogen. Assets in scope will cover both above and below ground assets, and include bends, valves, regulators, slam shuts, relief valves, and pig traps. Assets excluded include pipelines, compressors and cast iron components.
-
-
-
Asset Records Readiness for Hydrogen
The project will evaluate and deliver a plan that ensures our asset records are suitably complete to support the net zero transition.
The project will reduce uncertainty and risk and provide a more realistic proximation of asset data.
The HSE has indicated that it will be unable to support a network’s hydrogen safety case until they receive “a clear plan for checking unknown assets and how networks will ensure that only suitable materials are present in the network”. This includes our transmission pipelines.
Additionally, for the marginal extra effort, it would be prudent to ensure the completeness of our asset records is sufficient for us to either plan for the conversion to hydrogen or decommission sections as users switch to other heating technologies.
-
-
-
Augmented Reality Futures Close
Augmented Reality (AR) technology will be used at Futures Close to convey and inform various audiences including vulnerable consumers about various property archetypes, their construction, heat loss, and the type of retrofit solutions (heating systems, controls, fabric improvements) available to improve the level of domestic energy efficiency. AR will be used to inform, educate and engage audiences on-site at Futures Close as well as off-site at conferences and meetings avoiding the need to facilitate multiple visits on site. Live data feeds will also be visualised, illustrating room-by-room temperature, humidity as well as other metrics providing an engaging, interactive and informative asset for Futures Close.
-
-
-
Augmented Reality Futures Close
Augmented Reality (AR) technology will be used at Futures Close to convey and inform various audiences including vulnerable consumers about various property archetypes, their construction, heat loss, and the type of retrofit solutions (heating systems, controls, fabric improvements) available to improve the level of domestic energy efficiency. AR will be used to inform, educate and engage audiences on-site at Futures Close as well as off-site at conferences and meetings avoiding the need to facilitate multiple visits on site. Live data feeds will also be visualised, illustrating room-by-room temperature, humidity as well as other metrics providing an engaging, interactive and informative asset for Futures Close.
-
-
-
B-Linepack+ Alpha
Linepack flexibility is key for Gas Transmission to provide system resilience by management of swings within operational limits. In a hydrogen world, we know our energy content per km of linepack will decrease by up to 76%. Therefore, embedded resilience systems in the form of lined rock shafts are being investigated to supplement loss in linepack capability. We envision systems if implemented for hydrogen transmission to act similar to how now decommissioned natural gas holders were utilised for operational flexibility, pressure regulation, supply/demand mismatch management, load balancing, emergency backup and production buffering.
-
-
-
Biomethane Islands
To achieve decarbonisation targets all gas network operators in the UK need to demonstrate that the gas network can safely, technically and economically facilitate the distribution of low-carbon gases (biomethane and hydrogen). In response to this challenge, SGN aim to review the feasibility of the formation of biomethane islands in their Scotland area of operation. The outputs of this project will establish a business model for the optimisation of biomethane injection and formation of biomethane islands across the UK’s gas network. A feasibility study will address key areas including regulatory, technical, environmental, social, and commercial aspects as well as comprehensively assess the viability of developing Biomethane Islands. The outcome of the feasibility study will be to inform decision-making regarding project implementation. This will be captured and delivered in a comprehensive report and financial model of the business case. These islands will serve as models for sustainable living, demonstrating the feasibility and benefits of a circular economy approach to energy production and waste management and offer a low disruption option for the decarbonisation of all classes of gas consumers - Industrial, Commercial, and Domestic.
-
-
-
Calorific Gas Sensor
The UK gas networks are undergoing a major transition to support the integration of green gases, including biomethane and hydrogen. A significant challenge is the inability of the current gas billing infrastructure, based on flow-weighted average calorific value (CV) measurements taken at National Transmission System (NTS) offtakes, to accurately reflect the gas composition received by consumers—particularly with the increasing number of decentralised injection points. This discrepancy presents a technical and regulatory hurdle to achieving fair and transparent billing.
This programme is leveraging 3 suppliers to develop a range of novel calorific value sensors that will enable calorific value to be accurately measured at different points on the network without the need for venting.
The programme comprises of 3 individual projects, which will develop each suppliers’ technology up to a sufficiently high TRL where the sensors are ready to be trialled in the field. Each supplier will be delivering their own scope of work, but will be expected to share a reasonable amount of information with each other in order to ensure maximum value is obtained from this programme. The innovators will not be expected to disclose any information that could provide them with a competitive advantage over the other solutions
-
-
-
Carbon Dioxide Repurposing procedure for the NTS
The project described covers the development of a new repurposing process for NTS assets to transport gaseous phase carbon dioxide. The approach for repurposing the National Gas Transmission System (NTS) to transport carbon dioxide will need an innovative approach to meet the timelines for the net zero transition. There have been several projects undertaken to date to determine the interactions of carbon dioxide with the network assets. We are looking to determine if these activities are providing all the relevant data and evidence required for our network to transition.
-
-
-
Carbon Networks
As the UK transitions to a low-carbon energy future, gas networks must consider how strategic utilisation of existing assets can be realised. GDNs must also consider adjacent markets such as CCUS and its role in the supply chain now and in the future. The project will take a pragmatic approach to provide SGN with an assessment of the role of the gas network in the growing UK CCUS market
-
-
-
Cominglo – Blended CV Measurement Point
This project seeks to improve the accuracy of CV measurement in gas networks which distribute blended gas streams. Element Digital Engineering will address this by first studying the physics of gas blending in the gas network using Computational Fluid Dynamics (CFD). A wide range of simulations will enable the effects of different designs and mixing technologies to be understood in relation to the various gases under consideration. The predictions of these CFD studies will be validated through the design and development of a rig to simulate blending in the network. The overall results of these studies will be used to develop a tool that can be deployed within the gas networks to facilitate the accurate prediction of co-mingling, and subsequent CV measurement points supporting the design of blending systems.
-
-
-
Commercial Vehicle Fleet – Development of Total Cost of Operation Model
Decarbonisation of UK transport, and the related Zero Emission Vehicle (ZEV) mandate requires companies to transition their commercial vehicle fleets to Battery Electric Vehicles (BEV) or alternative new emerging technologies (e.g. FCEC). As an operational utility network with responsibility for public safety WWU’s fleet undergoes a more challenging and varied range of duty cycles than most commercial fleets, includes vehicles that are required to provide on-site power, and must be capable of meeting WWU’s statutory duty to respond quickly to Public Reported Escapes.
Within this challenging operational context, WWU must deliver a fleet transition at the lowest feasible cost to assure value for money for our customers. This is further complicated by the need to plan the fleet transition while the associated technological and policy landscape continues to evolve in parallel. Although the learnings generated from the project will be specific to WWU’s fleet as a case study, they will be applicable to any networks with an operational fleet.
To assure a cost-effective transition and derisk future operations, WWU require a Total Cost of Operation (TCO) model. This will be specifically targeted at our particular operational context, capable of assessing the costs and capabilities of a range of ZEV options, and crucially must be easy for staff to adopt for internal use and update in the future as new data and/or technologies become available.
The purpose of this project is to provide WWU with a TCO model that addresses our specific operational requirements, ensuring that plans and investment decisions will be grounded in real-world technology assessments and our operational fleet data.
-
-
-
Decentralised Alliance for South West Hydrogen (DASH)
Early cluster projects will not benefit I&C customers that are located away from industrial clusters and are traditionally more distributed in nature. These customers are unlikely to have access to hydrogen infrastructure developed through the primary industrial clusters. This presents the need for an alternative solution.
This project will explore the concept of how a larger number of low-volume hydrogen producers can support I&C customers in the absence of natural ‘clustering’ and high-volume production by using the South West region of WWU’s network as a case study. This will be done by exploring the whole systems concept of a gas network which is driven by distributed green hydrogen production at strategic locations where there is access to both gas and electricity grid infrastructure.
-
-
-
Decentralised System Resilience
This project constitutes a research study investigating the opportunities for gas network infrastructure to support storage and balancing in a decentralised UK energy system. The research will consider how a decentralised system might look in the UK from now until 2030, and onto 2050. An evaluation will be made of how other countries are approaching decentralisation, identifying examples the UK could draw on. Consideration will be given to how grid balancing will be achieved across various scenarios of peak demand and particular geographic locations in the UK and what challenges and opportunities this presents to gas networks.
-