- Home
- Publishers
- Future Energy Networks
Future Energy Networks
21 - 40 of 84 results
-
-
Decentralised Alliance for South West Hydrogen (DASH)
Early cluster projects will not benefit I&C customers that are located away from industrial clusters and are traditionally more distributed in nature. These customers are unlikely to have access to hydrogen infrastructure developed through the primary industrial clusters. This presents the need for an alternative solution.
This project will explore the concept of how a larger number of low-volume hydrogen producers can support I&C customers in the absence of natural ‘clustering’ and high-volume production by using the South West region of WWU’s network as a case study. This will be done by exploring the whole systems concept of a gas network which is driven by distributed green hydrogen production at strategic locations where there is access to both gas and electricity grid infrastructure.
-
-
-
Decentralised System Resilience
This project constitutes a research study investigating the opportunities for gas network infrastructure to support storage and balancing in a decentralised UK energy system. The research will consider how a decentralised system might look in the UK from now until 2030, and onto 2050. An evaluation will be made of how other countries are approaching decentralisation, identifying examples the UK could draw on. Consideration will be given to how grid balancing will be achieved across various scenarios of peak demand and particular geographic locations in the UK and what challenges and opportunities this presents to gas networks.
-
-
-
Demonstrating Downstream Procedures For Hydrogen
This project involves a comprehensive set of tasks aimed at implementing and validating a domestic safety system for hydrogen use, including excess flow valves.
-
-
-
Determining Future Energy Demand of B&R Team Vans with Full On-Board Power
Wales & West Utilities is undertaking a major programme of change to support decarbonisation and deliver a Net Zero gas network. Decarbonisation of the vehicle fleet is an integral component of that programme.
WWU operates a fleet of nearly 1,400 commercial vehicles, the majority of these being vans up to 3.5 tonnes GVW. Our fleet – mostly diesel-fuelled - plays a crucial role in providing a safe and efficient service. In addition to our vehicle fleet, WWU operates ~ 900 items of mobile plant, including mini diggers and a wide range of trailers, many of which are specialised.
WWU vans carry a wide range of power-operated tools and equipment, some of this currently being powered by hydrocarbon fuels, some by electricity and some by compressed air. Approximately a third of our van fleet (~400 units) is equipped with ‘full on-board power’ – a compressor and generator, mounted under the van floor and mechanically driven by the diesel engine and operating as a source of on-site power.
This group of vehicles primarily supports below-ground network repair and replacement activity: it is a significant energy consumer, so to help us understand how we can make an operationally cost-effective transition to zero emissions, it is the on-site energy requirements of the tools and equipment powered by this group that Cenex will evaluate for this project. This evaluation will provide information which can take account of (and feed in to) a range of different scenarios for the fleet in the future, such as changes to the number and type of vans allocated to particular teams and projects.
-
-
-
Digital Decommissioning of Large-Scale Equipment
As the Gas Transmission network responds to a changing energy system, from drivers including the transition to net zero and to changes in supply and demand, we are required to decommission our large site based assets in certain locations. Decommissioning is a multifaceted endeavour that goes beyond the conclusion of an asset’s lifespan and encompasses a complex deconstruction process. This project will implement an innovative AI tool to help National Gas manage decommissioning to drive benefits such as increasing the accuracy of cost estimation, ways to reduce carbon emissions, identify re-use potential and lower the overall time taken to decommission.
-
-
-
Domestic Air Ingress Mitigations
This project will help to provide assurance to UK Gas Distribution Network Operators (GDNOs) and wider industry on the safe design of domestic gas appliances in a future where hydrogen is being distributed in network pipelines. A risk to the normal safe operation of appliances under 100% hydrogen operation exists where a flammable hydrogen/air mixture is supplied to the appliance, creating the potential for flashback to occur within the gas installation pipework. This work will provide assurance that domestic appliances designed to operate on 100% hydrogen are designed in a way which do not enable flashback to occur.
The project will also investigate the long-term feasibility of installing an auto-locking Emergency Control Valve (ECV) at the end of 100% hydrogen networks to ensure that any reinstatement of supply after a period of isolation can only be undertaken by a competent gas engineer.
-
-
-
East Midlands Hydrogen Storage (EMStor)
UK’s Net Zero Emissions Target and the Role of Hydrogen: The UK has committed to a legally binding net zero emissions target by 2050. Achieving this target necessitates the integration of hydrogen, particularly in hard-to-decarbonize industrial applications and peaking power generation. The recent publication of the Climate Change Committee’s Seventh Carbon Budget highlights hydrogen’s significant role within the electricity supply sector. Hydrogen is identified as a crucial source of long-term storable energy that can be dispatched as needed and as a feedstock for synthetic fuels. For hydrogen to fully contribute to a future hydrogen system, its production, storage, and transportation must be considered collectively.
East Coast Hydrogen (ECH) Project: In recent years, Cadent, in partnership with National Gas and Northern Gas Networks (NGN), has developed the East Coast Hydrogen (ECH) Project. The ECH project aims to decarbonize primarily industry and power sectors. As part of this initiative, Cadent has developed the East Midlands Hydrogen Pipeline (EMHP), which aims to connect hydrogen production at Uniper’s Ratcliffe on Soar site to major industrial and power off-takers in the East Midlands. The project seeks to transport hydrogen to major population centres, including Nottingham, Leicester, Melton Mowbray, Derby, and Burton upon Trent. During the development of the EMHP, it became evident that hydrogen storage plays a critical role in establishing a resilient and efficient hydrogen system. Consequently, a consortium was formed to explore the feasibility of storage, leading to the East Midlands Storage Project (EMSTOR).
Discovery Phase of EMSTOR: During the Discovery Phase, EMSTOR evaluated various technologies for large-scale hydrogen storage in the East Midlands. The technologies considered included lined rock caverns, lined rock shafts, silos, and geological storage options such as aquifers and disused hydrocarbon fields. After comparing these technologies against several technical parameters, including Technology Readiness Level (TRL), cost, size, and location relative to pipelines, it was determined that hydrogen storage in geological fields, particularly disused hydrocarbon fields, is the most viable option. Therefore, disused hydrocarbon fields in geological formations were selected for further consideration in the Alpha Phase.
Alpha Phase Consortium: To execute the Alpha Phase, a consortium led by Cadent and including Star Energy Ltd, Centrica Energy Storage, National Grid, British Geological Society, University of Edinburgh, and Uniper was established. This consortium will focus on advancing the feasibility and implementation of hydrogen storage in disused hydrocarbon fields.
-
-
-
Effects of Water Ingress in a Hydrogen Network
Wales & West Utilities is undertaking a major programme of change to support decarbonisation and deliver a Net Zero gas network. The primary objective of this project is to investigate the effects of water ingress within a 100% hydrogen network and a blended hydrogen/natural gas network. The goal is to determine whether the introduction of hydrogen into the gas network could cause any additional impacts when water ingress occurs, and to compare these effects to those observed in the current natural gas network.
-
-
-
Energy Plan Translator
Develop a flexible and adaptable toolset for the rapid analysis of Local Area Energy Plans (LAEPs). This will convert qualitative statements to quantified metrics and identify key network specific planning parameters.
-
-
-
Enhancement of the anaerobic digestion process for biomethane production
The UK Government recognised that domestic biomethane production can play a significant role in decarbonising energy supplies. However, biomethane production plants face technical and operational challenges. Currently the content of biomethane within biogas produced from the anaerobic digestion (AD) process is often only around 50%. This partial conversion results in lower yields for AD operators and an increase in costly gas scrubbing requirements. The increased presence of impurity gases also increases requirement for propanation to increase the calorific value, high in both cost and carbon footprint.
This project seeks to address these challenges through the injection of green hydrogen into the AD process in specific quantities and at specific times to achieve greater conversion of carbon dioxide to biomethane within the acetogenesis stage of the AD process, thereby increasing the yield whilst reducing the need for gas scrubbing and propanation.
-
-
-
Equations of State for Net Zero Gases
In metering applications, Equations of State (EoS) are mathematical models that are used to convert measured volumes to standard units. This enables transfer from volume to mass, allowing customers to be billed and for the networked to be balanced in energy. Metering and network balancing cannot be performed in volume, as it doesn’t account for relative, varying gas component concentrations – and therefore CV.
The EoS currently used (AGA8) is acceptable for up to 5% hydrogen, but after this point it’s uncertainty is unknown – meaning the network may be unable to maintain accurate billing or system balancing. This project will obtain experimental data for a range of net zero gases and compare the output of several EoS for accuracy against real, measured, NTS-representative conditions.
-
-
-
Excess Flow Valve (EFV) Durability
This project will help to inform UK Gas Distribution Network Operators (GDNOs) and wider industry on the long-term suitability of existing Excess Flow Valve (EFV) designs in a future where hydrogen is being distributed in network pipelines. A risk to normal EFV functionality exists in the event that an ignition occurs within the downstream gas installation pipework and this project will help to understand the effectiveness of existing EFV designs to manage this risk, identifying any necessary modifications to existing EFV designs where appropriate.
-
-
-
Excess Flow Valve (EFV) Durability
This project will help to inform UK Gas Distribution Network Operators (GDNOs) and wider industry on the long-term suitability of existing Excess Flow Valve (EFV) designs in a future where hydrogen is being distributed in network pipelines. A risk to normal EFV functionality exists in the event that an ignition occurs within the downstream gas installation pipework and this project will help to understand the effectiveness of existing EFV designs to manage this risk, identifying any necessary modifications to existing EFV designs where appropriate.
-
-
-
Fairer Warmth Hub
The Fairer Warmth Hub (FWH) connects stakeholders of the Net Zero Transition through place-based strategies, providing tools and guidance to facilitate local energy plans and enhance collaboration. The FWH integrates digital tools and community engagement to facilitate effective communication and planning among diverse stakeholders, including households, small businesses, and local authorities. FWH is designed to bridge the gap in the energy transition by providing tailored support to these stakeholders, ensuring that the transition is inclusive and just. The FWH integrates three core elements:
- Trained ‘Champions’ – Volunteers or staff, known as Champions, are recruited and trained to support community engagement, helping to build trust and reduce miscommunication in local energy initiatives.
- Digital Tools (Virtual Assets) – Innovative digital tools (App + Website) and resources are used to facilitate energy transition planning and community engagement, particularly assisting Customer In Vulnerable Situation (CIVS) and those who are digitally excluded.
- Community Centres (Non-Virtual Assets) – Physical community hubs serve as accessible locations for hands-on support, providing a space for CIVS and other stakeholders to engage directly in the energy transition.
-
-
-
Finding the Hidden Vulnerable
This innovation project proposal is centred on trialling the development of a predictive model to identify customers in vulnerable situations whose heat comes from Cadent delivered gas that are missing out on the protections that the Priority Service Register (PSR) brings because they are “hidden” behind a non-domestic supply contract. The aim of the predictive model would be to aid Cadent to find these customers so that it can be ensured that they receive the support that they need in the event of an interruption to supply.
-
-
-
Flexible Gas Transition Plant – Phase 1 Feasibility Study
Analysis of the distribution networks undertaken in the H2 Caledonia and H2 Connect projects has identified sectorisation isolation as the optimal approach for conversion. Sectorisation isolation allows for a sector-by-sector approach, ensuring the gradual conversion of existing Natural Gas connections over to hydrogen, or managing the disconnection process should customers opt for alternative heating solutions. This project will aim to develop an understanding of the technical and financial feasibility of a Flexible Gas Transition Plant (FGTP) through primary project outputs such as: outline of design options, development of a list of transition use cases, a cost benefit analysis (CBA) for each transition scenario, and a roadmap for future phases including prototype design and trials.
-
-
-
Forecaster for Embedded Generation (FEmGE)
Gas networks supply embedded power stations that support the electricity network. These embedded generators can fire up without any warning to GDNs and is causing significant challenges to gas networks.
GDNs are required to submit hourly gas demand nominations to National Gas for each offtake point within specified time deadlines.
Embedded generators are small. They are not included in the UNC’s requirements to notify their GDN of intended offtake activity due to their size being below the threshold for NExAs (network exit agreements). Despite this, GDNs must include the demand from these embedded generators in their nominations to ensure there is sufficient gas within their network. This causes numerous challenges for SGN and other GDNs.
GDNs’ current forecasting process does not specifically forecast embedded gas generation, and current models do not take inputs from the electricity market. Embedded generators act in a variety of electricity markets, yet GDNs don’t have visibility of this demand.
It is anticipated that additional embedded generators will connect in the coming months/years as the demand for electricity increases.The challenge of not having knowledge of embedded generator’s demand and its potential to contribute to a storage shortage has been acknowledged by both EGRIT (Electricity and Gas Resilience Task Group) and NESO (National Energy System Operator). The benefits of creating a notification platform supported by a ML engine are various. Namely to develop an ML-enabled forecasting tool to predict gas demand from embedded generators with increased accuracy as delivery time approaches. In addition to create a notification platform to improve real-time visibility of embedded generator activities within the electricity and gas networks.
This NIA project aims to progress the FEmGE forecasting tool from TRL 1 to TRL 7, delivering a fully functional MVP. NGN will be funding this project to the value of £92,333 and SGN to £184,666 of the total of £276,999.
-
-
-
Future Hydrogen Safe Control of Operations (SCO) Procedures
Following the work completed on the policies and procedures project by QEMS, WWU have identified the requirement to update and re-vamp the existing Safe control of operations (SCO) procedures used by the network to support delivery of upcoming projects.
-
-
-
Future Operability of Gas for System Integration (FOGSI) Alpha
The project will develop an integrated hierarchical network modelling framework for simulating the operation of future GB energy system scenarios with highly interconnected gas and power networks. The realistic modelling of power-to-gas and storage operators’ behaviour will be emphasised. The integrated models will be demonstrated on a simulation platform as real-time digital twins for future system scenarios.
Considerable novelty will lie in the combination of modelling scale and granularity; representation of many autonomous decentralised agents making sub-optimal decisions; and the optimal resolution of dilemmas arising from the finite energy budgets constraining primarily weather-driven low to zero carbon scenarios.
-
-
-
FutureGrid CO2
FutureGrid CO2 is the final phase of a suite of Carbon Dioxide projects, looking at how National Gas can repurpose parts of its network to transport gaseous-phase Carbon Dioxide safely. What started out as literature reviews and feasibility studies, will turn into, physical testing and demonstration. National Gas will be using its world-leading FutureGrid facility to demonstrate how Carbon Dioxide will flow through its pipes, delivering on its promise to further use this facility after our successful FutureGrid SIF Beta projects. We will also be completing carbon dioxide venting, ruptures and real-time impurity corrosion tests- all of which are underexplored.
-