- Home
- Publishers
- Future Energy Networks
Future Energy Networks
61 - 63 of 63 results
-
-
Understanding the value of remote detectors
The statistical ‘value’ (i.e. risk reduction and cost) of remote hydrogen detectors has been determined through statistical based projects as part of the hydrogen heating programme (HHP). The cost has been shown to outweigh the risk, however, given hydrogen is not a mature heating solution, the cost can be justified in response to risk appetite from key stakeholders, such as consumers. This risk appetite is assumed. There is currently no analysis (qualitative or quantitative) into consumers attitudes towards the ‘value’ of remote detectors. This project will begin to explore the perception of risk reduction from remote detectors to be used to compliment the statistical based analysis to paint a fuller picture towards the utilisation and crucially, the value, of remote detectors.
-
-
-
Welding Residual Stress Measurements and Analysis for Gas Pipelines
This project concerns the research into welding residual stress values and the effect that they have on the overall pipework repurposing assessment route described in relevant hydrogen standards. Currently, overly conservative values need to be applied for welding residual stresses in any repurposing assessment. This project aims to build evidence on actual and modelled residual stresses seen within the pipelines industries, with a focus on natural gas pipelines. As the welding residual stress is a critical aspect of the fracture mechanics assessment, any improvements which can be gained would have an overall positive impact on the assessment results.
-
-
-
Wireless Methane Odorant Detector
This project aims to improve natural gas leak detection for over 3.5 million people with acute smell disorders e.g. anosmia. Traditional methane sensors require high power, limiting placement. The legally required odorant (80% tert-butyl mercaptan and 20% dimethyl sulphide) will continue as the UK transitions to hydrogen or blends, necessitating re-calibration of detectors.
Our solution is an odorant-based gas detector using a custom ultra-low power electrochemical sensor to measure TBM. These sensors operate for over 10 years on a sealed lithium-ion battery, detecting TBM from 20-30ppb (below our smell threshold) up to 1,500ppb (20% of the Lower Explosion Level), ensuring early warning of gas leaks.
With no natural sources of TBM, false positives are eliminated. The Sensor is ‘hydrogen ready,’ maintaining consistent odorant levels during the transition to hydrogen or blends, accurately notifying of gas leakage without reconfiguration.
-