- Home
- Publishers
- Future Energy Networks
Future Energy Networks
41 - 60 of 89 results
-
-
Gas Networks Evolution Simulator
The Gas Network Evolution Simulator (GNES) is an innovative project aimed at optimising the transition away from natural gas by using advanced Agent Based Modelling (ABM). GNES simulates the complex interactions between stakeholders such as Gas Distribution Networks (GDNs), Electricity Networks, consumers, and policymakers. It analyses economic, social, and environmental impacts of gas network decommissioning and explores new infrastructure opportunities. By identifying challenges and benefits, GNES supports the development of cost-effective, equitable solutions that support vulnerable populations, ensuring a smooth transition to low-carbon energy sources while minimising consumer disruption and maximising network efficiency.
-
-
-
Gas transmission asset resilience through network transitions Discovery
As the energy system transitions away from unabated natural gas and parts of the gas network are either decommissioned or repurposed to support the UK’s net zero goals, there is an increased risk of unintentional third-party damage to the network. Any supply interruptions to the transmission network would directly impact security of supply across the country and have a significant cost to customers including power generators, industry and domestic users. This project will investigate the benefits of moving from expensive, low frequency, manual network inspections to innovative AI assisted surveillance technologies in combination with satellite imagery and drones.
-
-
-
H100 Barhole Trials for Hydrogen Network Operations
This project will focus on barholing operations conducted after an emergency gas escape within the H100 Fife Distribution Network Operations. The scope will consider H100 scenarios, specifically the establishment of a new distribution network to deliver Hydrogen to selected properties in the conversion area. The minimum pressure for the H100 Fife Distribution network is 27 mbar, and the maximum pressure is 75 mbar. The aim of this project is to provide further evidence to support SGN operations on the H100 distribution network during emergencies and any future trials or broader rollouts of Hydrogen.
Steer Energy has been identified as a suitable contractor for executing this project due to their extensive expertise in this field and their previous work on the Barhole Trials and ITL Haldane Drill Isolator project. Steer has a proven partnership with SGN and the wider gas industry, offering a variety of services, including experimental lab testing, training, and testing facilities.
-
-
-
H2 Housing Design
This project will explore ventilation and explosion relief requirements for housing currently used on the gas network for pressure regulating installations (PRIs). Housings currently provide security from a range of factors from weather to vandalism, while also providing the necessary relief requirements in the event of an emergency. The understanding of these requirements for Natural Gas has been developed, however, work conducted in the IGEM TD/13 hydrogen supplement did not fully address whether these design specifications are suitable for use with Hydrogen. This multi-stage project will first explore the design specifications listed in industry standards (IGEM/TD/13, GIS/PRS/35, SGN/SP/CE/10, etc) and understand which of these may be appropriate and which may require redesign. The latter stage of this project will take the design specifications deemed to be unsuitable for use with hydrogen and conduct testing to develop revised design specifications which would provide the necessary relief requirements.
-
-
-
H2 Rail
This project will explore the feasibility of integrating hydrogen train refuelling infrastructure to support the development of a hydrogen rail network. This has particular relevance to our network as some of the UK’s hardest to electrify rail routes are situated in Wales and South West England. The project will focus on these hard to electrify routes, exploring H2’s potential role in enabling their decarbonisation. If successful, this project can help the WWU network to become a proving ground for real-world delivery of impactful H2 rail technology. It is expected to provide information which can be used in planning strategic hydrogen pipeline routes and network repurposing plans, and support regional energy planning.
-
-
-
H2 Site Safety Systems
This project will examine the suitability of existing Fire and Gas (F&G) detection and suppression systems for use with hydrogen blends of up to 20%. These systems comprise: fire detection, fire suppression, gas detection, and associated control systems. They are found in compressor cabs and at network terminals.
Through CFD modelling three representative F&G systems will be individually assessed for compatibility with blends, and will then be used as examples to make comments on the suitability of other F&G systems on the network. Where assets or control systems are not suitable, this project will not design a new system, but recommend where changes should be made and demonstrate how those changes safely manage risk – including cost estimation for upgrade or retrofit.
-
-
-
High Pressure Venting and Flaring Demonstration for Net-Zero Gases Transportation
National Gas Transmission (NGT) own and operate the UK’s National Transmission System (NTS), transporting natural gas from terminals to end users. NGT have ambitions to repurpose the existing to transport hydrogen and hydrogen blends. Understanding the impact of hydrogen on our existing assets is a key enabler for this.
This project will conduct design of flare for hydrogen and its blends and vent system for hydrogen, its blends and carbon dioxide and offline physical testing to provide evidence that hydrogen / hydrogen blends could be flared and vented safely and environmentally in for NTS.
-
-
-
Human Behaviours and automation
This project will produce valuable insights into understanding the relationship between human behaviours and the utilisation of safety devices with automated functionality. This follows the work done on hydrogen risk mitigations which included technology such as hydrogen detectors with automated functionality to remotely notify the emergency call centre to dispatch an engineer to the detected leak. In their review of this work, HSE have asked if the assumption that consumers will continue to act the same, knowing the device will be doing some automated, will change the validity of the modelling assumptions. This project will address that query and build on our own understanding of consumer insights; something which could add a depth of value to other projects exploring automated safety systems.
-
-
-
HyBlend II
This project assembles a multi-laboratory team to address high-priority research topics identified by industry related to the blending of hydrogen into the U.S. natural gas pipeline network. PRCI has been contracted by DOE to provide contract and invoicing support which allows additional members to join after project start.
There were four main activities being performed in Phase 1 of the CRADA project that fell under two categories: materials research and analysis. Sandia National Laboratories (SNL) led the materials research on metals, which is primarily used for natural gas transmission, while Pacific Northwest National Laboratory (PNNL) headed the research on polymeric materials, which comprise the natural gas distribution network. Argonne National Laboratory (ANL) was responsible for life-cycle analysis while the National Renewable Energy Laboratory (NREL) performed techno-economic analysis on hydrogen blending scenarios, the work on these subjects will be extended in Phase 2.
-
-
-
Hybrid Heat Systems (HHS) Acceleration Route
Project will deliver strategic analysis and recommendations to support the accelerated adoption of Hybrid Heat Systems (HHS) in GB. This includes assessing technology options, commercial models, stakeholder perspectives, and system integration pathways. The work will result in actionable insights, clear positioning of HHS within the wider decarbonisation strategy.
-
-
-
Hydrogen & Carbon Dryness Management
This Network Innovation Allowance (NIA) project investigated dew point management in hydrogen/natural gas blends, pure hydrogen and carbon dioxide transmission pipelines. In the National Transmission System (NTS), which is currently a natural gas network, the purity of the gas is carefully controlled via the network entry specification. Trace components, such as water, nitrogen oxides, sulphur containing compounds, oxygen and carbon dioxide have strict limits on their allowable levels in the network. This is done in part to ensure the gas delivered to end users meets the requirements of the customer, but also to protect transport and storage systems. Purity specifications are being developed for hydrogen, its blends with natural gas, and for carbon dioxide (CO2). This project focused specifically on the water content within these gases, in what concentrations it is likely to be acceptable, the conditions at which it may condense in the network, its interactions with other trace components and contaminants and the potential detrimental effect on the network.
Limiting moisture content and ensuring gas dryness is important for several reasons:
- Safety & Efficiency: Hydrogen’s efficiency as a fuel can be compromised by moisture. Water in hydrogen can affect the combustion process, leading to a reduced efficiency for applications like gas turbines.
- Corrosion: If dew points aren’t controlled effectively, liquid can drop out of the gas phase, and this moisture can cause corrosion in pipelines and hydrogen embrittlement. For CO2 pipelines this moisture can react to produce carbonic acid which can further corrode the pipelines.
The outcomes of the project should provide a clearer insight and strategy on how to effectively manage hydrogen and carbon dryness within the NTS, ensuring that the gas remains within the required specifications for current and future demands.
The project was split into three work packages (WP):
WP1 focused on hydrogen and its blends, initially reviewing the equations of state (EoS) that model the dew point temperature at varying water content and hydrogen/methane blend ratios. The impact on the network of liquid water formation in hydrogen was examined, including the interaction with other trace components such as CO2 and H2S, in particular the effect on welds and pipeline defects. Finally, a summary of international standards for hydrogen purity highlighted the likely water content limits that could be expected by hydrogen users and thus provided by producers.
WP2 focused on CO2, its phase behaviour and the effect impurities have on this behaviour using the most appropriate equations of state. The detrimental effect of CO2 and liquid water contained within it on pipelines, fittings and other parts of the network was reviewed.
WP3 focused on how the water content specifications could be managed on the network, from the point of view of monitoring and controlling water dew point in the gases. The water content expected from various production techniques were reviewed and a high-level costing for the dehydration process for both CO2 and hydrogen was made.
-
-
-
Hydrogen AGI Pipework Integrity Monitoring Phase 2
This project proposes a structured approach to assess the integrity of AGI pipework for hydrogen service. It includes development of a screening tool based on representative AGI archetypes, execution of ECAs to define flaw tolerances and inspection intervals, and evaluation of NDT capabilities with respect to desired AGI performances. The project also reviews integrity management software to support increased digitalisation and monitors emerging technologies for hydrogen-related NDT developments.
-
-
-
Hydrogen Fracture Surfaces Assessment
The LTS Futures project aims to understand how the local transmission system (LTS) could be repurposed from Natural Gas to hydrogen. The project encompasses several elements which will feed into a blueprint methodology for repurposing the LTS to hydrogen. During one of the work elements, LTS Futures conducted full-scale testing of pipeline defects and small-bore connections exposed to hydrogen. Testing was conducted until failure to provide information for hydrogen pipeline design, standards, and operational procedures. This project will undertake further detailed analysis of the fracture surfaces to provide a visual confirmation of hydrogen diffusion into the pipeline microstructure and if this contributed to failure.
-
-
-
Hydrogen Ignition Risk from Static and Autoignition Stage 2B – Static Generation experimentation
The key subject of HIRSA stage 2 projects is to understand if using hydrogen in the gas network will result in an increased likelihood of ignition from static discharge generated by particulates in flowing gas. Building on stage 2A, stage 2B will provide further experimental testing aimed at determining the absolute difference in electrostatic charge generated, identify whether any external factors impact one gas more than the other, and to control the factors affecting generation of the charge. The outputs of this work should provide the industry with a better understanding of the potential change in ignition risk when switching from Natural Gas to hydrogen and will also highlight relevant mitigations to manage this risk.
-
-
-
Hydrogen Impact on NTS Welds
Laboratory and full-scale testing have demonstrated that hydrogen gas affects the fracture performance of pipeline steel welds. To avoid severe knockdown factors stipulated by existing hydrogen pipeline codes, mechanical property data from welds tested in high-pressure gaseous hydrogen is required to enable optimised operation of the NTS in hydrogen.
National Gas Transmission have conducted a series of fracture toughness and fatigue crack growth rate tests on a wide selection of pipeline steels and welds representative of those used on the National Transmission System (NTS). A thorough review of the welds tested and how these compare to the wider population of welds in service on the NTS is required to provide further confidence to use this data in pipeline repurposing assessments and for new build design.
-
-
-
Hydrogen Permeation through the Oxide Layer Phase 1
This project is looking to address uncertainties surrounding LTS pipeline materials by investigating the effect of the oxide layer on hydrogen permeation rate for steel pipelines. This project will also investigate the formation of an oxide layer inside the pipe at different temperatures, as well as how the microstructure of the pipeline steel and condition of the oxide layer affect permeation for different grades of steel. It is critical this relation is better understood as these uncertainties are currently hindering our ability to fully and accurately assess the repurposing of the LTS. The outcomes of this project have the potential to increase cost-savings and improve confidence in the existing network to carry hydrogen, including blends.
-
-
-
Hydrogen Rollout Assessment
This project will help WWU to understand considerations for 100% Hydrogen Rollout at a town scale, to inform future activity on preparation for repurposing. Areas will be chosen which are representative of different networks, housing stock and demographics, which will require different approaches and engagement.
-
-
-
Hydrogen device trials
In order to support UK ambitions for hydrogen blending and the development of a hydrogen economy, National Gas will need to install new gas chromatographs with the capability to measure hydrogen up to 20% in a natural gas blend. At present hydrogen is not measured anywhere on the National Transmission System (NTS), and therefore there are no proven in-use devices, and limited experience within the company to allow effective decision making in deploying these assets in the move towards net zero.
In order to make informed decisions ahead of chromatograph fleet upgrade, and to allow for a wide selection of reliable device choices when it comes to that upgrade, National Gas require the testing of available devices to analyse their performance, and thus suitability for NTS installation. This project will employ a trusted testing house to obtain (through loaning) blend-ready chromatographs from suppliers, and then to rigorously examine the performance of those devices. These devices could be tested at the testing house’s site, or at the instrument vendor’s site.
-
-
-
Integrity Management of Gaseous Carbon Dioxide Pipelines
Existing defect assessments and repair methodologies are aligned with the P/11, P/20 and PM/DAM1 management procedures and are adopted to inspect, assess and repair the pipelines for defects and take suitable measures to reduce them. However, the scope and applicability of these assessment and repair methodologies in the presence of gaseous phase carbon dioxide remain uncertain. The key challenges which the project aims to address are:
- Will existing repair techniques such as epoxy shell, welded shells, composite wraps, gouge dressing etc. be suitable for transmission of gaseous phase carbon dioxide?
- What are the different defects we may encounter or consider hazardous in the presence of carbon dioxide? What are the impacts of carbon dioxide on each defect type? And how much does water/corrosion exacerbate this?
- Have the mechanisms of failure for each defect type changed after introducing carbon dioxide?
- Can we implement the assessment and repair methodologies safely? Are the techniques safe and suitable for the pipeline operations and maintenance teams?
The project seeks to answer the above in addition to understanding the types and extent of repairs across the NTS and review the impact of carbon dioxide on the effectiveness of these inspection, assessment and mitigation technologies.
-
-
-
Integrity Management of Hydrogen Pipelines
Existing defect assessments and repair methodologies are aligned with the T/PM/P/11 and T/PM/P/20 management procedures and are adopted to inspect, assess and repair the pipelines for defects and take suitable measures to reduce them. However, the scope and applicability of the repair techniques in the presence of high-pressure hydrogen remain uncertain. The key questions which form an outline of the project are:
- What are the different types of defects, we may encounter or consider injurious in the presence of hydrogen?
- What is the impact of hydrogen on each defect type? Have the mechanisms of failure changed for each defect type after hydrogen-natural gas blending?
- Will the existing repair techniques be applicable under transmission of high-pressure hydrogen and hydrogen-natural gas blends?
- Can we implement the defect assessment, inspection and repair methodologies safely? Are the techniques safe and suitable for the pipeline operations and maintenance teams?
The project seeks to answer the above in addition to understanding the types and extent of repairs across the NTS and assess the impact of hydrogen on the effectiveness of these inspection, assessment and mitigation technologies.
-