Future Energy Networks
111
results
41 - 60 of 111 results
-
-
Future Operability of Gas for System Integration (FOGSI) Alpha
The project will develop an integrated hierarchical network modelling framework for simulating the operation of future GB energy system scenarios with highly interconnected gas and power networks. The realistic modelling of power-to-gas and storage operators’ behaviour will be emphasised. The integrated models will be demonstrated on a simulation platform as real-time digital twins for future system scenarios.Considerable Read More
-
-
-
FutureGrid CO2
FutureGrid CO2 is the final phase of a suite of Carbon Dioxide projects, looking at how National Gas can repurpose parts of its network to transport gaseous-phase Carbon Dioxide safely. What started out as literature reviews and feasibility studies, will turn into, physical testing and demonstration. National Gas will be using its world-leading FutureGrid facility to demonstrate how Carbon Dioxide will flow through its pi Read More
-
-
-
Futures Close Heat Programme (FC Heat)
To reach our national net zero targets by 2050, we need to decarbonise approximately 25 million homes in England. Domestic heating accounts for approximately 14% of the UKs entire emissions and significant investment is required to improve the energy efficiency of our housing stock. In addition, there are major challenges associated with domestic decarbonisation: England has the most diverse housing stock in the UK. w Read More
-
-
-
Gas Networks Evolution Simulator
The Gas Network Evolution Simulator (GNES) is an innovative project aimed at optimising the transition away from natural gas by using advanced Agent Based Modelling (ABM). GNES simulates the complex interactions between stakeholders such as Gas Distribution Networks (GDNs), Electricity Networks, consumers, and policymakers. It analyses economic, social, and environmental impacts of gas network decommissioning and Read More
-
-
-
Gas transmission asset resilience through network transitions Discovery
As the energy system transitions away from unabated natural gas and parts of the gas network are either decommissioned or repurposed to support the UK’s net zero goals, there is an increased risk of unintentional third-party damage to the network. Any supply interruptions to the transmission network would directly impact security of supply across the country and have a significant cost to customers including pow Read More
-
-
-
H100 Barhole Trials for Hydrogen Network Operations
This project will focus on barholing operations conducted after an emergency gas escape within the H100 Fife Distribution Network Operations. The scope will consider H100 scenarios, specifically the establishment of a new distribution network to deliver Hydrogen to selected properties in the conversion area. The minimum pressure for the H100 Fife Distribution network is 27 mbar, and the maximum pressure is 75 mbar. The Read More
-
-
-
H2 Housing Design
This project will explore ventilation and explosion relief requirements for housing currently used on the gas network for pressure regulating installations (PRIs). Housings currently provide security from a range of factors from weather to vandalism, while also providing the necessary relief requirements in the event of an emergency. The understanding of these requirements for Natural Gas has been developed, however, w Read More
-
-
-
H2 Rail
This project will explore the feasibility of integrating hydrogen train refuelling infrastructure to support the development of a hydrogen rail network. This has particular relevance to our network as some of the UK’s hardest to electrify rail routes are situated in Wales and South West England. The project will focus on these hard to electrify routes, exploring H2’s potential role in enabling their decarbonisation. If successful, this proje Read More
-
-
-
H2 Site Safety Systems
This project will examine the suitability of existing Fire and Gas (F&G) detection and suppression systems for use with hydrogen blends of up to 20%. These systems comprise: fire detection, fire suppression, gas detection, and associated control systems. They are found in compressor cabs and at network terminals.Through CFD modelling three representative F&G systems will be individually assessed for compatibility with blends, a Read More
-
-
-
High Pressure Venting and Flaring Demonstration for Net-Zero Gases Transportation
National Gas Transmission (NGT) own and operate the UK’s National Transmission System (NTS), transporting natural gas from terminals to end users. NGT have ambitions to repurpose the existing to transport hydrogen and hydrogen blends. Understanding the impact of hydrogen on our existing assets is a key enabler for this.This project will conduct design of flare for hydrogen and its blends and vent system for hydroge Read More
-
-
-
Human Behaviours and automation
This project will produce valuable insights into understanding the relationship between human behaviours and the utilisation of safety devices with automated functionality. This follows the work done on hydrogen risk mitigations which included technology such as hydrogen detectors with automated functionality to remotely notify the emergency call centre to dispatch an engineer to the detected leak. In their review of thi Read More
-
-
-
HyBlend II
This project assembles a multi-laboratory team to address high-priority research topics identified by industry related to the blending of hydrogen into the U.S. natural gas pipeline network. PRCI has been contracted by DOE to provide contract and invoicing support which allows additional members to join after project start.There were four main activities being performed in Phase 1 of the CRADA project that fell under two Read More
-
-
-
HyNTS Corrosion
The National Transmission System (NTS) pipelines employ a number of external corrosion barrier coatings, primarily coal tar enamel and fusion bonded epoxy (FBE). Cathodic protection is deployed on the network to mitigate for coating failure. Additionally, there are a range of pipeline steels that are used in both above ground buried pipework, both stainless and carbon steels of various grades.Following the previous NIA proje Read More
-
-
-
Hybrid Heat Systems (HHS) Acceleration Route
Project will deliver strategic analysis and recommendations to support the accelerated adoption of Hybrid Heat Systems (HHS) in GB. This includes assessing technology options, commercial models, stakeholder perspectives, and system integration pathways. The work will result in actionable insights, clear positioning of HHS within the wider decarbonisation strategy.
-
-
-
Hydrogen & Carbon Dryness Management
This Network Innovation Allowance (NIA) project investigated dew point management in hydrogen/natural gas blends, pure hydrogen and carbon dioxide transmission pipelines. In the National Transmission System (NTS), which is currently a natural gas network, the purity of the gas is carefully controlled via the network entry specification. Trace components, such as water, nitrogen oxides, sulphur containing compounds, oxyge Read More
-
-
-
Hydrogen AGI Pipework Integrity Monitoring Phase 2
This project proposes a structured approach to assess the integrity of AGI pipework for hydrogen service. It includes development of a screening tool based on representative AGI archetypes, execution of ECAs to define flaw tolerances and inspection intervals, and evaluation of NDT capabilities with respect to desired AGI performances. The project also reviews integrity management software to support increased dig Read More
-
-
-
Hydrogen Environment Testing of Girth Welds Phase 2 - Constant Load Testing
Previous testing carried out under NIA has outstanding gaps that require further testing to close. Completing the additional testing will confirm actual fracture toughness values to be used and the corresponding J value from the crack growth resistance curve. The project outputs are required and will be used to progress design, specification and procurement processes for hydrogen major projects. The results can also Read More
-
-
-
Hydrogen Fracture Surfaces Assessment
The LTS Futures project aims to understand how the local transmission system (LTS) could be repurposed from Natural Gas to hydrogen. The project encompasses several elements which will feed into a blueprint methodology for repurposing the LTS to hydrogen. During one of the work elements, LTS Futures conducted full-scale testing of pipeline defects and small-bore connections exposed to hydrogen. Testing was con Read More
-
-
-
Hydrogen Fuel Cell Operating Hub for Repex/Large-Scale Projects
To maintain their above ground and underground pipework assets, all Gas Distribution Networks (GDN) operate substantial fleets of commercial vehicles (primarily vans, but also HGVs), together with mobile plant and powered equipment. Presently, there is a complete reliance on hydrocarbon fuels, primarily diesel and petrol. Both fuel types are usually sourced via the public retail forecourt network. Similar issues Read More
-
-
-
Hydrogen Ignition Risk from Static and Autoignition (HIRSA) – Stage 3
The HIRSA programme is assessing ignition risks for the transition to hydrogen, with Stage 3 focusing on high pressure static risks including shockwave ignition and rapid adiabatic compression. This research supports the safe integration of hydrogen into gas networks.
-