- Home
- Projects
Projects
Deblending Rollout Strategy Phase 2
National Gas Transmission (NGT) are committed to reducing emissions from the operation of the National Transmission System (NTS) and eliminating emissions by 2050. The transition to hydrogen provides an opportunity to reduce carbon and utilise the network for hydrogen refuelling for transport. The HyNTS Deblending for Hydrogen Transport project has involved the development of a UK-wide rollout strategy from ERM that lays out demand clustering and potential locations for deblending supplied refuelling for transportation mapped against the NTS.
The project will aims to obtain further information on NRMM maritime cars LGVs and mobile power to fully understand the hydrogen demand. It will also review the existing rollout strategy to ensure it is accurate and full captures the current hydrogen market given the changes in this landscape
Net Zero Impact on Wider Network Contents
This project aims to explore the impact of hydrogen blends (in natural gas) 100% hydrogen and carbon dioxide on contaminants (arisings) likely to be found in gas transmission pipelines (e.g. Naturally Occurring Radioactive Materials (NORMs) dusts mill scale welding slag glycols water BTEX methanol heavy metals sulphur compounds pyrophorics as well as rotating machinery lube/seal oils and valve sealants etc).
The project will aim to understand the current composition and characteristics of any contaminants the impact of hydrogen and carbon dioxide on the behaviour/composition/presence of contaminants establish how long methane related contaminants will persist on the network (for repurposed pipelines) the potential for contaminants to cause pipeline gas to go ‘off-spec’ and the implications of contaminant interactions on National Transmission System (NTS) operation/integrity.
Fairer Warmth Hub
The Fairer Warmth Hub (FWH) connects stakeholders of the Net Zero Transition through place-based strategies providing tools and guidance to facilitate local energy plans and enhance collaboration. The FWH integrates digital tools and community engagement to facilitate effective communication and planning among diverse stakeholders including households small businesses schools social healthcare and local authorities. FWH is designed to bridge the gap in the energy transition by providing tailored support to these stakeholders ensuring that the transition is inclusive and just. The FWH integrates three core elements:
- Trained ‘Champions’ – Volunteers or staff known as Champions are recruited and trained to support community engagement helping to build trust and reduce miscommunication in local energy initiatives.
- Digital Tools (Virtual Assets) – Innovative digital tools (App + Website) and resources are used to facilitate energy transition planning and community engagement particularly assisting Customer In Vulnerable Situation (CIVS) and those who are digitally excluded.
- Community Centres (Non-Virtual Assets) – Physical community hubs serve as accessible locations for hands-on support providing a space for CIVS and other stakeholders to engage directly in the energy transition.
Hybrid Heat Systems (HHS) Acceleration Route
Project will deliver strategic analysis and recommendations to support the accelerated adoption of Hybrid Heat Systems (HHS) in GB. This includes assessing technology options commercial models stakeholder perspectives and system integration pathways. The work will result in actionable insights clear positioning of HHS within the wider decarbonisation strategy.
Asset Records Readiness for Hydrogen
The project will evaluate and deliver a plan that ensures our asset records are suitably complete to support the net zero transition.
The project will reduce uncertainty and risk and provide a more realistic proximation of asset data.
The HSE has indicated that it will be unable to support a network’s hydrogen safety case until they receive “a clear plan for checking unknown assets and how networks will ensure that only suitable materials are present in the network”. This includes our transmission pipelines.
Additionally for the marginal extra effort it would be prudent to ensure the completeness of our asset records is sufficient for us to either plan for the conversion to hydrogen or decommission sections as users switch to other heating technologies.
Decentralised System Resilience
This project constitutes a research study investigating the opportunities for gas network infrastructure to support storage and balancing in a decentralised UK energy system. The research will consider how a decentralised system might look in the UK from now until 2030 and onto 2050. An evaluation will be made of how other countries are approaching decentralisation identifying examples the UK could draw on. Consideration will be given to how grid balancing will be achieved across various scenarios of peak demand and particular geographic locations in the UK and what challenges and opportunities this presents to gas networks.
Achieving Future Hydrogen Demand
This project constitutes a research study assessing the future demand for hydrogen across SGN regions and the role SGN infrastructure could play in facilitating access to hydrogen.
As the UK transitions to a low-carbon energy future gas networks must consider how strategic utilisation of existing assets can be realised. Using SGN’s extensive gas network to carry hydrogen instead of natural gas would be a major step towards decarbonisation. This repurposing necessitates an understanding of both the technical feasibility of repurposing pipelines to carry hydrogen and future hydrogen demand requirements.