- Home
- Projects
Projects
The Potential of Biomethane to Accelerate the Decarbonisation of UK HGVs
The following is a proposed outline for a report on the decarbonisation benefits and potential of biomethane in the UK Road Haulage sector.
The report will position biomethane as:
- A complimentary technology to zero tailpipe emission vehicles that offers faster decarbonisation potential due to the near-term infrastructure scalability of the technology and the suitability for long distance and non-fixed route logistics.
- A cost-effective way to reduce Carbon emissions by over 84% over the next 15-20 years whilst zero tailpipe emission technologies are developed and the supporting infrastructure is deployed.
- An enabler to the transition to zero tailpipe emission vehicles by offering reduced carbon abatement costs that in turn can generate funds to invest in zero emissions infrastructure and vehicles.
It will serve as a reference document for discussions with industry stakeholders governments and regulators.
Finding the Hidden Vulnerable
This innovation project proposal is centred on trialling the development of a predictive model to identify customers in vulnerable situations whose heat comes from Cadent delivered gas that are missing out on the protections that the Priority Service Register (PSR) brings because they are “hidden” behind a non-domestic supply contract. The aim of the predictive model would be to aid Cadent to find these customers so that it can be ensured that they receive the support that they need in the event of an interruption to supply.
Digital Decommissioning of Large-Scale Equipment
As the Gas Transmission network responds to a changing energy system from drivers including the transition to net zero and to changes in supply and demand we are required to decommission our large site based assets in certain locations. Decommissioning is a multifaceted endeavour that goes beyond the conclusion of an asset’s lifespan and encompasses a complex deconstruction process. This project will implement an innovative AI tool to help National Gas manage decommissioning to drive benefits such as increasing the accuracy of cost estimation ways to reduce carbon emissions identify re-use potential and lower the overall time taken to decommission.
Hydrogen Fracture Surfaces Assessment
The LTS Futures project aims to understand how the local transmission system (LTS) could be repurposed from Natural Gas to hydrogen. The project encompasses several elements which will feed into a blueprint methodology for repurposing the LTS to hydrogen. During one of the work elements LTS Futures conducted full-scale testing of pipeline defects and small-bore connections exposed to hydrogen. Testing was conducted until failure to provide information for hydrogen pipeline design standards and operational procedures. This project will undertake further detailed analysis of the fracture surfaces to provide a visual confirmation of hydrogen diffusion into the pipeline microstructure and if this contributed to failure.
Open Maps
This project has enormous potential to benefit all customers in vulnerable situations as it will provide accurate assessment of communities and all interested parties to provide suitable support to the area. This will enable GDN DNO Electricity transmission and Gas transmission partners such as community groups to specifically target areas with relevant support this will allow project partners to accurately provide information which will be bespoke to the specific needs of the area such as Carbon Monoxide awareness Priority Services Register messaging increasing awareness and registrations.
It will allow GDN’s or other service providers to enlist support for VCMA BAU or NIA projects directly addressing the needs of communities rather than adopting a broad-brush approach which has been the traditional approach. This system will present itself as the very foundation for future years projects and investments specifically as we progress through the energy system transition which will help address the very real and ever-changing needs of communities and vulnerable customers groups by putting data at the front and centre of future decision making for GDN’s and partners.
Gas Networks Evolution Simulator
The Gas Network Evolution Simulator (GNES) is an innovative project aimed at optimising the transition away from natural gas by using advanced Agent Based Modelling (ABM). GNES simulates the complex interactions between stakeholders such as Gas Distribution Networks (GDNs) Electricity Networks consumers and policymakers. It analyses economic social and environmental impacts of gas network decommissioning and explores new infrastructure opportunities. By identifying challenges and benefits GNES supports the development of cost-effective equitable solutions that support vulnerable populations ensuring a smooth transition to low-carbon energy sources while minimising consumer disruption and maximising network efficiency.
Asset Records Readiness for Hydrogen
The project will evaluate and deliver a plan that ensures our asset records are suitably complete to support the net zero transition.
The project will reduce uncertainty and risk and provide a more realistic proximation of asset data.
The HSE has indicated that it will be unable to support a network’s hydrogen safety case until they receive “a clear plan for checking unknown assets and how networks will ensure that only suitable materials are present in the network”. This includes our transmission pipelines.
Additionally for the marginal extra effort it would be prudent to ensure the completeness of our asset records is sufficient for us to either plan for the conversion to hydrogen or decommission sections as users switch to other heating technologies.
NextGen Electrolysis – Wastewater to Green Hydrogen Beta
Wales and West Utilities are partnering with HydroStar Welsh Water and NGED to look at two demonstrator projects required from new electrolyser systems and the associated electrolyte that ensures resilience of hydrogen supply across the network giving best value for money and energy security within WWU’s network along with other UK wide Gas Distribution Network (GDN) customers.
Current electrolysers focus on stack-efficiency and hydrogen purity without considering real-world manufacturing and operational constraints and the high costs associated. This project focusses on utilising impurified-water e.g. rainwater storm-overflow and industrial process wastewater as feedstock which reduces operational constraints and costs for customers whilst enabling wide-scale uptake of low-carbon hydrogen.
Reducing Gas Emissions During Pipeline Commissioning
Based on previous work ROSEN Engineers believe the quantity of natural gas vented during commissioning operations can safely be reduced by up to 80% through targeted changes to direct purging procedures.
For Gas Distribution Networks’ (GDNs) gas venting remains a necessary part of normal operations for maintenance or safety purposes. Previous research work undertaken by ROSEN(UK) Limited for the EIC with project partners Northern Gas Networks (NGN) and Wales and West Utilities (WWU) identified activities where venting of natural gas to atmosphere occurs (Gas Venting Research Project NIA reference number NIA_NGN_282)
Understanding the value of remote detectors
The statistical ‘value’ (i.e. risk reduction and cost) of remote hydrogen detectors has been determined through statistical based projects as part of the hydrogen heating programme (HHP). The cost has been shown to outweigh the risk however given hydrogen is not a mature heating solution the cost can be justified in response to risk appetite from key stakeholders such as consumers. This risk appetite is assumed. There is currently no analysis (qualitative or quantitative) into consumers attitudes towards the ‘value’ of remote detectors. This project will begin to explore the perception of risk reduction from remote detectors to be used to compliment the statistical based analysis to paint a fuller picture towards the utilisation and crucially the value of remote detectors.
Alternative to overhead/underground electricity cables
This project will consider what role the below ground gas network (new or repurposed) could play in transporting energy over long distances instead of electricity transmission and distribution upgrades. The project will help WWU understand how the use of the current or future gas system would compare to electricity infrastructure for long distance transmission and what factors could influence cross system decision making. The project will also create a comparison tool that allows users to compare case studies.
Demonstrating Downstream Procedures For Hydrogen
This project involves a comprehensive set of tasks aimed at implementing and validating a domestic safety system for hydrogen use including excess flow valves.
Futures Close Heat Programme (FC Heat)
To reach our national net zero targets by 2050 we need to decarbonise approximately 25 million homes in England. Domestic heating accounts for approximately 14% of the UKs entire emissions and significant investment is required to improve the energy efficiency of our housing stock. In addition there are major challenges associated with domestic decarbonisation:
- England has the most diverse housing stock in the UK. with 35% built before the end of WWII.
- Sixty-four percent are owner-occupied and these homeowners need to have a good cost effective and efficient experience of home and heating upgrade as we move towards zero carbon homes.
- Implementing heating upgrades to this ageing housing stock requires a ‘whole house’ approach therefore consideration must be given to the building fabric and heating system.
Retrofitting existing homes with electric heating systems or deployment of green hydrogen boilers offer potential solutions however the intricacies of deployment and installation are complex further research and development is required to learn more about installation performance of various heating options. Doing so will inform future domestic decarbonisation strategies.
Decentralised System Resilience
This project constitutes a research study investigating the opportunities for gas network infrastructure to support storage and balancing in a decentralised UK energy system. The research will consider how a decentralised system might look in the UK from now until 2030 and onto 2050. An evaluation will be made of how other countries are approaching decentralisation identifying examples the UK could draw on. Consideration will be given to how grid balancing will be achieved across various scenarios of peak demand and particular geographic locations in the UK and what challenges and opportunities this presents to gas networks.
Cominglo – Blended CV Measurement Point
This project seeks to improve the accuracy of CV measurement in gas networks which distribute blended gas streams. Element Digital Engineering will address this by first studying the physics of gas blending in the gas network using Computational Fluid Dynamics (CFD). A wide range of simulations will enable the effects of different designs and mixing technologies to be understood in relation to the various gases under consideration. The predictions of these CFD studies will be validated through the design and development of a rig to simulate blending in the network. The overall results of these studies will be used to develop a tool that can be deployed within the gas networks to facilitate the accurate prediction of co-mingling and subsequent CV measurement points supporting the design of blending systems.
Enhancement of the anaerobic digestion process for biomethane production
The UK Government recognised that domestic biomethane production can play a significant role in decarbonising energy supplies. However biomethane production plants face technical and operational challenges. Currently the content of biomethane within biogas produced from the anaerobic digestion (AD) process is often only around 50%. This partial conversion results in lower yields for AD operators and an increase in costly gas scrubbing requirements. The increased presence of impurity gases also increases requirement for propanation to increase the calorific value high in both cost and carbon footprint.
This project seeks to address these challenges through the injection of green hydrogen into the AD process in specific quantities and at specific times to achieve greater conversion of carbon dioxide to biomethane within the acetogenesis stage of the AD process thereby increasing the yield whilst reducing the need for gas scrubbing and propanation.
Energy Plan Translator
Develop a flexible and adaptable toolset for the rapid analysis of Local Area Energy Plans (LAEPs). This will convert qualitative statements to quantified metrics and identify key network specific planning parameters.
Decentralised Alliance for South West Hydrogen (DASH)
Early cluster projects will not benefit I&C customers that are located away from industrial clusters and are traditionally more distributed in nature. These customers are unlikely to have access to hydrogen infrastructure developed through the primary industrial clusters. This presents the need for an alternative solution.
This project will explore the concept of how a larger number of low-volume hydrogen producers can support I&C customers in the absence of natural ‘clustering’ and high-volume production by using the South West region of WWU’s network as a case study. This will be done by exploring the whole systems concept of a gas network which is driven by distributed green hydrogen production at strategic locations where there is access to both gas and electricity grid infrastructure.
Pathfinder Enhancements
This project will update the Pathfinder tool to improve functionality and reflect more current underlying data. Use of the tool developed in this project should result in better choices regarding investment in energy saving measures
Scaling Hydrogen with Nuclear Energy (SHyNE)
Significant efforts are required to support the transition of our energy systems moving away from carbon-intensive fuels such as coal diesel petrol and gas towards cleaner sources of power generation such as wind solar nuclear and hydrogen. There is a potential for hydrogen to play a hugely significant role in our energy system the extent of which will be driven by a range of factors including the ability to transport it to where it is needed. There have been recent positive decisions for hydrogen’s potential uses in blending transportation domestic heating and industry. To produce sufficient hydrogen to meet this potential need it will be important to increase and diversify hydrogen production methods.
As nuclear is a reliable and consistent source of clean energy that is unaffected by external factors such as the weather Northern Gas Networks and Wales and West Utilities would like to investigate the possible use of nuclear power as a method of delivering the future increased demand in hydrogen production. This project will explore the opportunity for hydrogen production from nuclear to support a net zero transition across the gas network.
Benefits of nuclear-enabled hydrogen (NEH) in the context of gas distribution networks (GDNs) will be explored building on the established benefits of nuclear energy production.
The overall project outcome is that NGN WWU and other stakeholders are sufficiently informed to determine whether further investment and integration of nuclear-enabled hydrogen to transition plans are justified and how a potential first project could take its next step to deployment through securing technology licences sites off takers and financing.