Projects
Determining Future Energy Demand of B&R Team Vans with Full On-Board Power
Wales & West Utilities is undertaking a major programme of change to support decarbonisation and deliver a Net Zero gas network. Decarbonisation of the vehicle fleet is an integral component of that programme.
WWU operates a fleet of nearly 1400 commercial vehicles the majority of these being vans up to 3.5 tonnes GVW. Our fleet – mostly diesel-fuelled - plays a crucial role in providing a safe and efficient service. In addition to our vehicle fleet WWU operates ~ 900 items of mobile plant including mini diggers and a wide range of trailers many of which are specialised.
WWU vans carry a wide range of power-operated tools and equipment some of this currently being powered by hydrocarbon fuels some by electricity and some by compressed air. Approximately a third of our van fleet (~400 units) is equipped with ‘full on-board power’ – a compressor and generator mounted under the van floor and mechanically driven by the diesel engine and operating as a source of on-site power.
This group of vehicles primarily supports below-ground network repair and replacement activity: it is a significant energy consumer so to help us understand how we can make an operationally cost-effective transition to zero emissions it is the on-site energy requirements of the tools and equipment powered by this group that Cenex will evaluate for this project. This evaluation will provide information which can take account of (and feed in to) a range of different scenarios for the fleet in the future such as changes to the number and type of vans allocated to particular teams and projects.
Pathfinder Enhancements
This project will update the Pathfinder tool to improve functionality and reflect more current underlying data. Use of the tool developed in this project should result in better choices regarding investment in energy saving measures
Welding Residual Stress Measurements and Analysis for Gas Pipelines
This project concerns the research into welding residual stress values and the effect that they have on the overall pipework repurposing assessment route described in relevant hydrogen standards. Currently overly conservative values need to be applied for welding residual stresses in any repurposing assessment. This project aims to build evidence on actual and modelled residual stresses seen within the pipelines industries with a focus on natural gas pipelines. As the welding residual stress is a critical aspect of the fracture mechanics assessment any improvements which can be gained would have an overall positive impact on the assessment results.
Commercial Vehicle Fleet – Development of Total Cost of Operation Model
Decarbonisation of UK transport and the related Zero Emission Vehicle (ZEV) mandate requires companies to transition their commercial vehicle fleets to Battery Electric Vehicles (BEV) or alternative new emerging technologies (e.g. FCEC). As an operational utility network with responsibility for public safety WWU’s fleet undergoes a more challenging and varied range of duty cycles than most commercial fleets includes vehicles that are required to provide on-site power and must be capable of meeting WWU’s statutory duty to respond quickly to Public Reported Escapes.
Within this challenging operational context WWU must deliver a fleet transition at the lowest feasible cost to assure value for money for our customers. This is further complicated by the need to plan the fleet transition while the associated technological and policy landscape continues to evolve in parallel. Although the learnings generated from the project will be specific to WWU’s fleet as a case study they will be applicable to any networks with an operational fleet.
To assure a cost-effective transition and derisk future operations WWU require a Total Cost of Operation (TCO) model. This will be specifically targeted at our particular operational context capable of assessing the costs and capabilities of a range of ZEV options and crucially must be easy for staff to adopt for internal use and update in the future as new data and/or technologies become available.
The purpose of this project is to provide WWU with a TCO model that addresses our specific operational requirements ensuring that plans and investment decisions will be grounded in real-world technology assessments and our operational fleet data.
Integrity Management of Hydrogen Pipelines
Existing defect assessments and repair methodologies are aligned with the T/PM/P/11 and T/PM/P/20 management procedures and are adopted to inspect assess and repair the pipelines for defects and take suitable measures to reduce them. However the scope and applicability of the repair techniques in the presence of high-pressure hydrogen remain uncertain. The key questions which form an outline of the project are:
- What are the different types of defects we may encounter or consider injurious in the presence of hydrogen?
- What is the impact of hydrogen on each defect type? Have the mechanisms of failure changed for each defect type after hydrogen-natural gas blending?
- Will the existing repair techniques be applicable under transmission of high-pressure hydrogen and hydrogen-natural gas blends?
- Can we implement the defect assessment inspection and repair methodologies safely? Are the techniques safe and suitable for the pipeline operations and maintenance teams?
The project seeks to answer the above in addition to understanding the types and extent of repairs across the NTS and assess the impact of hydrogen on the effectiveness of these inspection assessment and mitigation technologies.
Reducing Gas Emissions During Pipeline Commissioning
Based on previous work ROSEN Engineers believe the quantity of natural gas vented during commissioning operations can safely be reduced by up to 80% through targeted changes to direct purging procedures.
For Gas Distribution Networks’ (GDNs) gas venting remains a necessary part of normal operations for maintenance or safety purposes. Previous research work undertaken by ROSEN(UK) Limited for the EIC with project partners Northern Gas Networks (NGN) and Wales and West Utilities (WWU) identified activities where venting of natural gas to atmosphere occurs (Gas Venting Research Project NIA reference number NIA_NGN_282)
Assessing Energy Impacts via Thermal Analysis
The project aims to use a vehicle-mounted thermal camera and Artificial Intelligence (AI) to detect heat loss from homes on a city-wide scale. The data will be used to assess the condition of a property regarding its ability to retain heat and provide tailored recommendations addressing insulation problems. This critical first step allows for better targeting of necessary retrofits and offers a scientifically measured alternative or complementary approach to traditional EPC.
Cominglo – Blended CV Measurement Point
This project seeks to improve the accuracy of CV measurement in gas networks which distribute blended gas streams. Element Digital Engineering will address this by first studying the physics of gas blending in the gas network using Computational Fluid Dynamics (CFD). A wide range of simulations will enable the effects of different designs and mixing technologies to be understood in relation to the various gases under consideration. The predictions of these CFD studies will be validated through the design and development of a rig to simulate blending in the network. The overall results of these studies will be used to develop a tool that can be deployed within the gas networks to facilitate the accurate prediction of co-mingling and subsequent CV measurement points supporting the design of blending systems.
Digital Decommissioning of Large-Scale Equipment
As the Gas Transmission network responds to a changing energy system from drivers including the transition to net zero and to changes in supply and demand we are required to decommission our large site based assets in certain locations. Decommissioning is a multifaceted endeavour that goes beyond the conclusion of an asset’s lifespan and encompasses a complex deconstruction process. This project will implement an innovative AI tool to help National Gas manage decommissioning to drive benefits such as increasing the accuracy of cost estimation ways to reduce carbon emissions identify re-use potential and lower the overall time taken to decommission.
Application of Functional Blending - Testing a Market-led Approach
Wales & West Utilities has developed a Regional Decarbonisation Pathway to provide an overarching strategic plan for the network in Wales and the South West of England. To deliver that pathway more detailed assessment and planning is required to facilitate the progression of opportunities in particular areas.
In 2023 WWU supported Cadent as the lead partner in the development and delivery of a Functional Blending Specification (FBS) which has progressed the technical understanding of how blending equipment can be practically applied within the context of existing gas network assets (https://smarter.energynetworks.org/projects/NIA_CAD0079/). In 2023 UK Government affirmed their support for network blending whilst networks have continued to develop evidence in support of blending since (Hydrogen blending in GB distribution networks: strategic decision - GOV.UK (www.gov.uk)).
Understanding the value of remote detectors
The statistical ‘value’ (i.e. risk reduction and cost) of remote hydrogen detectors has been determined through statistical based projects as part of the hydrogen heating programme (HHP). The cost has been shown to outweigh the risk however given hydrogen is not a mature heating solution the cost can be justified in response to risk appetite from key stakeholders such as consumers. This risk appetite is assumed. There is currently no analysis (qualitative or quantitative) into consumers attitudes towards the ‘value’ of remote detectors. This project will begin to explore the perception of risk reduction from remote detectors to be used to compliment the statistical based analysis to paint a fuller picture towards the utilisation and crucially the value of remote detectors.
Wireless Methane Odorant Detector
This project aims to improve natural gas leak detection for over 3.5 million people with acute smell disorders e.g. anosmia. Traditional methane sensors require high power limiting placement. The legally required odorant (80% tert-butyl mercaptan and 20% dimethyl sulphide) will continue as the UK transitions to hydrogen or blends necessitating re-calibration of detectors.
Our solution is an odorant-based gas detector using a custom ultra-low power electrochemical sensor to measure TBM. These sensors operate for over 10 years on a sealed lithium-ion battery detecting TBM from 20-30ppb (below our smell threshold) up to 1500ppb (20% of the Lower Explosion Level) ensuring early warning of gas leaks.
With no natural sources of TBM false positives are eliminated. The Sensor is ‘hydrogen ready’ maintaining consistent odorant levels during the transition to hydrogen or blends accurately notifying of gas leakage without reconfiguration.
Alt Pipe
As the owner of the National Transmission System (NTS) National Gas is committed to responsibly managing our redundant assets in a manner that contributes to a sustainable lower-carbon future by decommissioning them responsibly refurbishing for re-use where viable and/or or changing their purpose where possible. This discovery project will identify decommissioned elements of redundant pipework on the transmission system which are unlikely to be used for refurbishment or part of any wider repurposing of the core network and explore the potential of repurposing these for alternative uses including the storage and/or transmission of electrical energy heat fuels water and data.
Lotus Notes Logbook Upgrade
NGN currently operate a Lotus Notes application with a bespoke electronic Logbook system to capture all of the activity with day and planned ahead that occurs within our gas control centre. This system has been in operation since 1997 and has proven to be a highly reliable and flexible tool to manage planned works faults general site activity and wider issues.
The current technology is outdated and contains years’ worth of data causing it to be slow. There are no links between Lotus notes and other vital control room applications (SCADA etc.). Raising faults becomes a tedious task and the Logbook and other in-apps are not user friendly. There are no updates available to improve the existing system.
The current system needs to be replaced but to achieve that we need a full exploration of where technology can deliver to our requirements and to fully explore the impact of net zero and what new functionality may be required to manage the transition to net zero.
This is an early stage feasibility project to understand all of the challenges opportunities and risks that UK GDNs face with their systems in order to help facilitate the transition to net zero energy systems.
Augmented Reality Futures Close
Augmented Reality (AR) technology will be used at Futures Close to convey and inform various audiences including vulnerable consumers about various property archetypes their construction heat loss and the type of retrofit solutions (heating systems controls fabric improvements) available to improve the level of domestic energy efficiency. AR will be used to inform educate and engage audiences on-site at Futures Close as well as off-site at conferences and meetings avoiding the need to facilitate multiple visits on site. Live data feeds will also be visualised illustrating room-by-room temperature humidity as well as other metrics providing an engaging interactive and informative asset for Futures Close.
Standardised Biomethane Connection Designs
National Gas has seen a significant increase in the number of enquiries from biomethane developers for connections to the NTS.
There are currently circa 66 projects the connections team have identified as having NTS connection potential with an associated volume of 5.9TWh per annum.
Developers are attracted to the NTS for numerous reasons but the following are the main drivers:
- No injection of propane or odorant
- Capacity and capability
To speed up time to connect to a biomethane facility this project was developed to produce an innovative standardised design for a Minimum Offtake Connection (MOC) in a pit.
FutureGrid CO2
FutureGrid CO2 is the final phase of a suite of Carbon Dioxide projects looking at how National Gas can repurpose parts of its network to transport gaseous-phase Carbon Dioxide safely. What started out as literature reviews and feasibility studies will turn into physical testing and demonstration. National Gas will be using its world-leading FutureGrid facility to demonstrate how Carbon Dioxide will flow through its pipes delivering on its promise to further use this facility after our successful FutureGrid SIF Beta projects. We will also be completing carbon dioxide venting ruptures and real-time impurity corrosion tests- all of which are underexplored.
Energy Plan Translator
Develop a flexible and adaptable toolset for the rapid analysis of Local Area Energy Plans (LAEPs). This will convert qualitative statements to quantified metrics and identify key network specific planning parameters.
Probabilistic Fitness-for-Service Assessment of Hydrogen Pipeline Girth Welds
Repurposing of natural gas pipelines made of carbon steel for use with hydrogen blends requires a fitness-for-service analysis as part of the hydrogen use safety case. Girth welds of an unknown quality exist in the Local Transmission System (LTS). In hydrogen service these welds would have a greater susceptibility to fracture failure due to material embrittlement caused by interaction of steel material with hydrogen.
Current inspection methods do not routinely inspect girth welds for defects. Deterministic defect assessment models require the use of conservative assumptions for defect sizes material properties and loading. This can lead to overly pessimistic conclusions about the suitability of pipelines with girth welds for use with hydrogen.
More detailed probability-based assessments are required to reduce the inherent pessimism in deterministic calculation methods. This would provide confidence of the safety and allow for greater use of the LTS with hydrogen and contribute to a quicker and cheaper energy transition for the UK gas network.
Future Hydrogen Safe Control of Operations (SCO) Procedures
Following the work completed on the policies and procedures project by QEMS WWU have identified the requirement to update and re-vamp the existing Safe control of operations (SCO) procedures used by the network to support delivery of upcoming projects.