Projects
Gas transmission asset resilience through network transitions Discovery
As the energy system transitions away from unabated natural gas and parts of the gas network are either decommissioned or repurposed to support the UK’s net zero goals there is an increased risk of unintentional third-party damage to the network. Any supply interruptions to the transmission network would directly impact security of supply across the country and have a significant cost to customers including power generators industry and domestic users. This project will investigate the benefits of moving from expensive low frequency manual network inspections to innovative AI assisted surveillance technologies in combination with satellite imagery and drones.
INNOVATIVE MONITORING AND CONTROL OF PIPELINE CONSTRUCTION
Cadent proposes to trial “Digital Inspector” (DI) an innovative platform that enhances real-time control inspection and recording of pipeline construction activities. Digital Inspector provides verifiable evidence of weld quality supervises critical parameters live during construction and generates a complete digital record for asset integrity.
This project will trial Digital Inspector across multiple Cadent construction projects in 2025/26 working closely with Cadent’s contractors to assess practical usability contractor acceptance and the impact on existing BAU processes.
Maximising Capacity at Biomethane Sites
This project will develop network and/or entry site solutions that will enable biomethane supply to meet the swings in demand through the year.
Asset Cortex – Generative AI for asset hierarchy
The Asset Cortex project is a Generative AI initiative by National Gas Transmission (NGT) aimed at transforming its legacy 4-level asset hierarchy into a deeper ISO 14224-compliant structure. This Proof of Concept (PoC) will explore the feasibility of using AI to infer component-level details from system-level data such as pressure and age enabling automated hierarchy generation. The project supports RIIO-GT3 objectives including predictive maintenance digital twin creation and improved asset lifecycle visibility. It will also enhance integration with systems like SAP and Copperleaf and streamline field force operations. Key phases include requirements capture data mapping AI model development benchmarking against manually collected data and final reporting. Grasby Bottom and Hatton Multi Junction sites will serve as testbeds. The project is expected to reduce manual effort improve scalability and lay the foundation for broader digital transformation. It will also inform IT infrastructure needs and data governance strategies. While the current phase focuses on feasibility successful validation could lead to full-scale deployment supporting NGT’s strategic goals around automation cost efficiency and sustainability. Asset Cortex is positioned as a foundational enabler for future infrastructure planning and operational excellence across the gas network.
H100 Barhole Trials for Hydrogen Network Operations
This project will focus on barholing operations conducted after an emergency gas escape within the H100 Fife Distribution Network Operations. The scope will consider H100 scenarios specifically the establishment of a new distribution network to deliver Hydrogen to selected properties in the conversion area. The minimum pressure for the H100 Fife Distribution network is 27 mbar and the maximum pressure is 75 mbar. The aim of this project is to provide further evidence to support SGN operations on the H100 distribution network during emergencies and any future trials or broader rollouts of Hydrogen.
Steer Energy has been identified as a suitable contractor for executing this project due to their extensive expertise in this field and their previous work on the Barhole Trials and ITL Haldane Drill Isolator project. Steer has a proven partnership with SGN and the wider gas industry offering a variety of services including experimental lab testing training and testing facilities.
Reducing Green Gas Costs Through BioCO2 Sequestration
The work will develop a pathway for the biomethane sector to monetise CO2 and identify the role the gas networks can play reducing the long-term cost of gas decarbonisation.
Hydrogen Permeation through the Oxide Layer - Phase 2
This project aims to address major gaps identified in NIA2_SGN0078 which conducted a thorough literature review of the international scientific and industry knowledge base. The work will focus on characterising the hydrogen permeability rate of API Grades X52 and X60 vintage pipelines and welds by analysing the microstructure of each sample investigating the impact of internal corrosion layers and conducting mechanical testing post-exposure.
A correlation exercise will also be conducted to equate gaseous charging with electrochemical charging. The outcome of this work targets an improved industry best-practice for permeation and fracture toughness tests providing a validated benchmark framework with the potential to inform future updates of industry standards and procedures and saving costs on any future material and permeation testing work.
Development of Technical Readiness for Large Diameter Ball Valves
In order to construct commission and operate new hydrogen pipelines and installations safely and as part of modifications to existing assets for repurposing ball valves are required to carry out isolations. Selected ball valves need to have been proven to be suitable for service in large diameter high pressure hydrogen networks.
This project will carry out performance validation testing on a 32″ ball valve to confirm suitability to operate in high pressure hydrogen networks.
Hydrogen Blending: Direct Injection Feasibility Study
This project has been initiated to assess the technical and commercial feasibility of direct hydrogen injection into the gas distribution network at 5% and 20% by volume. It supports the broader Market Frameworks appraisal by providing the evidence needed to evaluate whether both System Entry Models direct injection and pre-blending are feasible under varying network conditions.
The need for this study was identified through the Hydrogen Blending Implementation Plan which outlined two technical approaches for hydrogen connections: injecting hydrogen directly into the network or pre-blending it before entry each with distinct technical and commercial implications. While National Gas has assessed both models for the transmission network a gap analysis revealed that these findings are not directly transferable to the distribution network.
Evidence for pre-blending was previously completed as part of HyDeploy and the Hydrogen Blending Functional Specification project. It was shown that this approach provides more controlled mixing but may require more complex infrastructure leading to higher costs for the producer. Although it is assumed Direct Injection may be achievable at lower cost there are multiple key technical challenges associated with the technique such as the potential for inadequate hydrogen mixing which could result in non-compliant gas safety concerns including material integrity and operational constraints e.g. GSMR exclusion zones.
Through literature review CFD modelling engineering assessments and commercial analysis the study will evaluate the technical and safety performance risks and cost implications of direct injection across a range of scenarios and configurations.
The Role of Gas Distribution Networks in Power Generation
This project will assess the current and future role of gas distribution networks (GDNs) in supporting dispatchable electricity generation within a decarbonising UK energy system. It will identify method(s) for GDN operators to obtain accurate gas usage data from existing generation connections and develop future scenarios to inform network planning and investment.
Clean Power Flexibility Investigation
Clean Power 2030 (CP2030) aims for a fully decarbonised electricity system using unabated gas only as backup. This introduces an important challenge: how can the gas transmission network remain viable and deliver flexibility during extreme demand events despite not being utilised most of the time? This project aims to understand how to sustain the gas network technically and economically in a low average high peak demand future focusing on the interaction between gas and electricity systems.
Gas Transmission Data Sharing Infrastructure
This project will entail a feasibility study to assess the viability of developing a secure scalable and interoperable data sharing infrastructure for National Gas Transmission (NGT) supporting regulatory compliance stakeholder access and alignment with NESO’s DSI initiative. The main objective is to gain a better understanding of how we share data currently and how this will change moving forward both within established participants and enabling new participants and stakeholders to benefit from National Gas’s data. This will support the wider NESO led DSI initiative. Using two NGT data systems as a use case for this study
GGT- Novel Green Gases
Novel green molecules have the potential to make a significant contribution to the decarbonisation of the UK’s gas network while also reducing system costs. Synthetic and e-methane can play a significant role in meeting future industrial demand as well as decarbonising the power transport and domestic heat sectors. This project investigates novel green gases in more depth to understand how they can be implemented effectively and quickly deployed to decarbonise the gas sector in the UK.
Green Gas Access
Green Gas Access will define tools to improve how green gas is managed across UK distribution networks supporting net-zero goals. With fossil fuels still expected to dominate the energy mix by 2050 we must ensure resilient supply and avoid capacity loss as we integrate decentralised sources like biomethane. The solution is to enable real-time network operation including dynamic supply modelling scenario planning and technology deployment. Key outcomes include: improved green gas injection control better asset use onboarding new suppliers efficiently and supporting the transition to low-carbon systems through coordinated green gas storage and power-to-gas operation.
The Warmth of Community
This project will conduct market research on available or soon to be available hybrid products for discussion and presentation back to WWU and WW Housing to choose a preferred solution for the properties identified that are suitable to trial the equipment in. The project will provide networks with demand data and look to aggregate this over WW Housing stock to understand wider impact on gas networks if this was considered a viable option to decarbonise housing stock.
IGEM TD1 / TD13 Hydrogen Supplements Review
IGEM have received requests from operators to update the hydrogen TD1 / TD13 supplements to take account of outputs from research projects. The project will review and assess the updates required based on findings from completed hydrogen research projects. This will support the repurposing of existing pipelines and installations from Natural Gas to hydrogen and Natural Gas/hydrogen blends with input and support from users/stakeholders and formal approval by IGEM.
The project will also develop a methodology for fracture and fatigue assessments for existing Natural Gas pipelines to be repurposed to hydrogen service. This methodology will assess the impact of blends of hydrogen up to and including 100% hydrogen to determine whether pipeline derating and/or deblending is required. The requirements for the application of this specification should be included in the updates to the IGEM/TD/1 and IGEM/TD/13 hydrogen supplements.
NextGen Electrolysis – Wastewater to Green Hydrogen Beta
Wales and West Utilities are partnering with HydroStar Welsh Water and NGED to look at two demonstrator projects required from new electrolyser systems and the associated electrolyte that ensures resilience of hydrogen supply across the network giving best value for money and energy security within WWU’s network along with other UK wide Gas Distribution Network (GDN) customers.
Current electrolysers focus on stack-efficiency and hydrogen purity without considering real-world manufacturing and operational constraints and the high costs associated. This project focusses on utilising impurified-water e.g. rainwater storm-overflow and industrial process wastewater as feedstock which reduces operational constraints and costs for customers whilst enabling wide-scale uptake of low-carbon hydrogen.
View our Year One Annual Report here:
Innovation Highway - Phase 2
The Innovation Highway phase 2 project will utilise AI and machine-learning to optimise the full innovation value chain. The platform will develop a minimum commercial product to help facilitate collaboration amongst networks and other sectors such as water companies so they can innovate together. AI-empowered algorithms will simplify the identification mapping assessment and selection of problems and ideas reducing manual processing time and enhancing effective decision making; this will support identifying and prioritising projects that will deliver the highest benefits. The platform will also help networks automate the development of cost benefit analysis.
Gas Network Evolution Simulator (Alpha)
GNES (Gas Network Evolution Simulator) uses Agent Based Modelling to simulate how people policies and infrastructure interact as the UK transitions away from natural gas. By reflecting real-world behaviours and decisions it helps energy networks policymakers and communities explore fair cost-effective pathways to decarbonisation. GNES reveals how transition choices impact different households and regions ensuring no one is left behind. Developed by the Centre for Energy Equality with industry and public partners GNES supports a whole-system approach to planning a just and resilient energy future that works for everyone not just those able to move first.
Control Room Automation
NGN use various systems with each one requiring different levels of human interaction. The drive towards net zero will involve the introduction of a multi-gas network increasing the network’s complexity. It’s envisaged there’ll be an additional amount of human interaction required to support the systems resulting in staff having to spend less time on strategic initiatives and operational challenges. The control room needs to be future ready to improve productivity and operational efficiency hence the necessity for additional interactions to support the various systems mentioned below.
- SCADA
- Business applications
- Electronic logging system
Alongside the EIC we have completed the ‘Call for Innovation’ process and identified a supplier to deliver a feasibility study to identify vendors offering platform technology for: Automation Enhancement of situational awareness.