Future Energy Networks
81 - 100 of 126 results
-
-
Integrity Management of Hydrogen Pipelines
More LessExisting defect assessments and repair methodologies are aligned with the T/PM/P/11 and T/PM/P/20 management procedures and are adopted to inspect, assess and repair the pipelines for defects and take suitable measures to reduce them. However, the scope and applicability of the repair techniques in the presence of high-pressure hydrogen remain uncertain. The key questions which form an outline of the project are:
- What are the different types of defects, we may encounter or consider injurious in the presence of hydrogen?
- What is the impact of hydrogen on each defect type? Have the mechanisms of failure changed for each defect type after hydrogen-natural gas blending?
- Will the existing repair techniques be applicable under transmission of high-pressure hydrogen and hydrogen-natural gas blends?
- Can we implement the defect assessment, inspection and repair methodologies safely? Are the techniques safe and suitable for the pipeline operations and maintenance teams?
The project seeks to answer the above in addition to understanding the types and extent of repairs across the NTS and assess the impact of hydrogen on the effectiveness of these inspection, assessment and mitigation technologies.
-
-
-
Lotus Notes Logbook Upgrade
More LessNGN currently operate a Lotus Notes application with a bespoke electronic Logbook system to capture all of the activity with day and planned ahead that occurs within our gas control centre. This system has been in operation since 1997 and has proven to be a highly reliable and flexible tool to manage planned works, faults, general site activity and wider issues.
The current technology is outdated and contains years’ worth of data causing it to be slow. There are no links between Lotus notes and other vital control room applications (SCADA etc.). Raising faults becomes a tedious task and the Logbook and other in-apps are not user friendly. There are no updates available to improve the existing system.
The current system needs to be replaced but to achieve that we need a full exploration of where technology can deliver to our requirements, and to fully explore the impact of net zero and what new functionality may be required to manage the transition to net zero.
This is an early stage feasibility project to understand all of the challenges, opportunities and risks that UK GDNs face with their systems, in order to help facilitate the transition to net zero energy systems.
-
-
-
Low Carbon Conversion of Non Domestic Properties Utilising Distributed Natural Gas
More LessThis project investigates the technical and economic feasibility of converting non-domestic buildings from natural gas to low carbon energy sources, specifically hydrogen and electricity. It aims to address the significant evidence gap around the conversion of commercial and institutional buildings that are currently supplied by the GB gas distribution networks. The study will assess a wide range of building archetypes, including care homes, schools, hospitality venues, and light industrial sites, using a combination of literature review, site surveys, detailed system designs, and technoeconomic modelling. The outputs will inform future energy policy, support infrastructure planning, and help ensure safe and cost-effective deployment of low carbon technologies in non-domestic settings.
-
-
-
MASiP Phase 3 (Qualification Testing & Integrated System Development)
More LessThe MASiP Phase 3 project aims to develop, test, and qualify a new pipeline system (MASiP) as a safe and cost-effective alternative to traditional steel pipelines for pipelines operating above 7 bar, capable of transporting natural gas, biogas, and up to 100% hydrogen. Building on Phases 1 and 2, this phase focuses on the technical assessment of tight radius bends, tees, and damage repair, as well as the integration of live monitoring systems in a prototype operational environment. Comprehensive validation will include connectors, coatings, repair systems, hot-tapping solutions, ground movement tolerance, durability, and design life testing. All testing will be carried out in accordance with IGEM, API, and ASME standards, supported by statistical and independently witnessed trials to generate robust qualification data for industry adoption. The key deliverable is a validated, deployable hydrogen-ready pipeline system that is safe, compliant, and cost-effective, offering potential cost savings of up to 50% compared with steel. The project outcomes will support the UK’s RIIO-GD2 strategy and 2050 net-zero targets by enabling hydrogen-ready infrastructure, improving monitoring, installation efficiency, and long-term reliability, while also providing the evidence base required for regulatory, policy, and industry acceptance of alternative pipeline materials.
-
-
-
Maximising the use of a decommissioned network
More LessThis project constitutes a research study exploring innovative opportunities to repurpose decommissioned gas pipelines and associated assets to support future energy systems and critical infrastructure needs.
By exploring diverse repurposing options beyond hydrogen and carbon dioxide, it is hoped that it will be possible to identify potential growth areas for gas pipeline assets that in some areas may otherwise become stranded. The study will include a review of economic viability, technical feasibility, and regulatory considerations for any identified options.
-
-
-
NTS Pipeline Assessments Phase 2
More LessThis project will build upon previous work to inform decisions relating to the repurposing of National Transmission System pipelines for 100% hydrogen and hydrogen-natural gas blends. New input data will be generated and collated, the assessment methodology will be refined and an alternative assessment method, probabilistic, will be utilised and the resulting network impact will be considered.
This project will generate the following benefits:
- More accurate assessment of the capability of the NTS to transport 100% hydrogen and hydrogen-natural gas blends.
- Data on the impact of low percentage blend hydrogen on pipeline materials.
- Standardised document for Engineering Critical Assessments (ECA) of hydrogen and hydrogen-natural gas blend pipelines and pipework.
Greater understanding on the effect of hydrogen on the design and operation of pipeline systems.
-
-
-
Navigator Project
More LessSituation:
As National Grid ESO transitions to the NESO it will take on the role of Regional Energy Strategic Planners, which will bring a focus on the alignment of Local Area Energy Plans and distribution network planning.
Complication:
Current regional distribution network future energy scenarios are produced by electricity distribution networks. Gas distribution networks do not have an equivalent activity Accordingly, regional and local area energy planning in not informed by a balanced consideration of all energy vectors.
Solution:
An agile and easy to use Whole Energy Systems Pathway (WESP) tool, with detailed temporal and spatial investment planning capabilities, to enable a regional whole energy system planning capability which informs gas network planning, as well as inform national, regional and local planners, in an objective, evidence based. way
-
-
-
Net Zero Impact on Wider Network Contents
More LessThis project aims to explore the impact of hydrogen blends (in natural gas), 100% hydrogen and carbon dioxide on contaminants (arisings) likely to be found in gas transmission pipelines (e.g. Naturally Occurring Radioactive Materials (NORMs), dusts, mill scale, welding slag, glycols, water, BTEX, methanol, heavy metals, sulphur compounds, pyrophorics as well as rotating machinery lube/seal oils and valve sealants etc).
The project will aim to understand the current composition and characteristics of any contaminants, the impact of hydrogen and carbon dioxide on the behaviour/composition/presence of contaminants, establish how long methane related contaminants will persist on the network (for repurposed pipelines), the potential for contaminants to cause pipeline gas to go ‘off-spec’ and the implications of contaminant interactions on National Transmission System (NTS) operation/integrity.
-
-
-
Net Zero Multi-Vector Assessment
More LessThis project will help Cadent to understand considerations for a Net Zero Multi-Vector at a town scale, to inform future activity on preparation for repurposing. An area will be chosen which is representative of different networks, housing stock and demographics, which will require different approaches and engagement.
-
-
-
Net Zero Safety & Ignition Risk
More LessNational Gas are investigating the use of the National Transmission System to transport hydrogen and hydrogen blends. To support this, research and testing is required to understand the risks of high pressure hydrogen transmission, including ignition. This project will identify, for 100% hydrogen and blends of hydrogen up to 20%, the sources of ignition including how the distance of ignition sources affects the likelihood of ignition. It will also investigate the frequency and the different types of ignition events e.g. jet fires. Lastly, it will look at the probability of ignition on sites and in pipework.
-
-
-
Network Policies and Procedures – Development Roadmap
More LessUK gas networks are managed and maintained using an extensive suite of policies, policies standards and procedures. These documents have been developed gradually over decades of gas network operation, however the transition to hydrogen necessitates a wholesale review and update of all existing documents. There is much commonality between the networks’ documents and therefore it would be most efficient to update these documents in a coordinated way to avoid the unnecessary duplication of effort.
-
-
-
NextGen Electrolysis – Wastewater to Green Hydrogen Beta
More LessWales and West Utilities are partnering with HydroStar, Welsh Water and NGED to look at two demonstrator projects required from new electrolyser systems and the associated electrolyte that ensures resilience of hydrogen supply across the network, giving best value for money and energy security within WWU’s network, along with other UK wide Gas Distribution Network (GDN) customers.
Current electrolysers focus on stack-efficiency and hydrogen purity without considering real-world manufacturing and operational constraints, and the high costs associated. This project focusses on utilising impurified-water, e.g. rainwater, storm-overflow and industrial process wastewater as feedstock, which reduces operational constraints and costs for customers whilst enabling wide-scale uptake of low-carbon hydrogen.
-
-
-
Novel Unified Viewer for NGT Network Performance Twin
More LessAs part of the National Gas Network Performance Twin program, this project is designed to demonstrate a scalable digital twin platform focused on improving infrastructure resilience, supporting hydrogen integration, and addressing climate adaptation across the National Transmission System (NTS). This initiative integrates three strategic components: Collaborative Visual Data Twin (CVDT) – a 3D BIM-based digital twin platform that visualises and monitors asset performance in real time. HyNTS Dataset Automation – a structured, automated geodatabase that supports hydrogen readiness assessments and asset integrity modelling. Flood Twin – a predictive flood simulation model that enables scenario-based risk analysis and resilience planning for Above Ground Installations (AGIs).
-
-
-
Open Maps
More LessThis project has enormous potential to benefit all customers in vulnerable situations as it will provide accurate assessment of communities and all interested parties to provide suitable support to the area. This will enable GDN, DNO, Electricity transmission, and Gas transmission partners such as community groups to specifically target areas with relevant support, this will allow project partners to accurately provide information which will be bespoke to the specific needs of the area such as Carbon Monoxide awareness, Priority Services Register messaging, increasing awareness and registrations.
It will allow GDN’s or other service providers to enlist support for VCMA, BAU or NIA projects directly addressing the needs of communities, rather than adopting a broad-brush approach which has been the traditional approach. This system will present itself as the very foundation for future years projects and investments, specifically as we progress through the energy system transition which will help address the very real and ever-changing needs of communities and vulnerable customers groups by putting data at the front and centre of future decision making for GDN’s and partners.
-
-
-
Pathfinder Enhancements
More LessThis project will update the Pathfinder tool, to improve functionality and reflect more current underlying data. Use of the tool developed in this project should result in better choices regarding investment in energy saving measures
-
-
-
Pipeline Installation Techniques for Net Zero
More LessNGT is committed to supporting the government and the broader industry in achieving the Net Zero target by 2050. CCUS, alongside hydrogen, will play a critical role in reaching this goal. Since the existing infrastructure was originally designed for methane, adapting it to transport these new gases presents significant engineering challenges. To address this, an extensive research program has been launched to assess the technical feasibility of repurposing sections of the NTS for hydrogen and carbon dioxide transportation. While repurposing existing pipelines will be an essential part of the transition, it will not be sufficient, new infrastructure will be required to support a scalable hydrogen and carbon network. Given the ambitious deployment timelines, meeting these targets will require not only innovative technical solutions but also a holistic strategy that integrates the supply chain and fosters collaboration across the industry.
-
-
-
Predictive Model for Flood Risk Management
More LessThis project will develop and evaluate a predictive flood monitoring system for Above Ground Installations (AGIs) and pipeline assets using real-time sensor data and 48-hour surface water forecasting. The system will be deployed at four locations identified through a nationwide flood risk survey. The trial will assess the system’s accuracy, responsiveness, and operational value across diverse environments. The project supports climate adaptation, regulatory compliance, and asset resilience by enabling early warning and proactive intervention. It aligns with RIIO-2 NIA objectives by reducing flood-related disruption, enhancing safety, and informing future investment decisions. The project will conclude with a technical report and recommendations for wider rollout under RIIO-3.
-
-
-
Predictive Tool for Unaccounted-For Gas (UAG) Identification
More LessThe Unaccounted-for Gas (UAG) project aims to develop a predictive tool that identifies and quantifies UAG across the National Transmission System (NTS). Leveraging 12-18 months of SCADA data, the tool will simulate gas flow and metering behaviour to pinpoint anomalies and reduce losses. UAG currently represents significant financial cost to the consumer; even a 1% reduction could yield practical savings. The project aligns with RIIO-2 NIA criteria and supports regulatory compliance under Special Condition 5.6. It builds on prior research, and integrates learnings from international benchmarks. The initiative will enhance operational efficiency, improve data transparency, and support long-term decarbonisation goals through better system visibility and control.
-
-
-
Preferential Emissions Study
More LessThe characteristics of transmission pressure hydrogen and natural gas blends are not fully understood, including relative leakage behaviour. This project will test whether or not methane and hydrogen within a blend leak at the same rates, or whether due to its small size, hydrogen will leak at a ratio greater than its relative concentration, and whether it leaks where methane does not.
Understanding the leak behaviour of hydrogen in a natural gas blend will ensure we can operate a blended system safely, particularly in enclosed spaces, and will ensure that the carbon benefit of hydrogen enrichment is not lost through fugitive emissions. Also, as green hydrogen is currently significantly more expensive than natural gas, the shrinkage costs associated with hydrogen fugitive emissions could be considerable.
-
