Projects
Project Remo2val
The use of greener gases such as biomethane are an important part of the UK’s transition to net zero. Underground storage sites for biomethane are critical for balancing seasonal supply and demands for energy. However increased levels of oxygen in biomethane can lead to corrosion of assets in wet gas conditions compromising the integrity of storage facilities. This project will assess in a comparative analysis the technical and economic viability of advanced catalytic and adsorption technologies to reduce oxygen levels in biomethane with corrosion inhibitors to ensure the integrity and longevity of critical storage infrastructure.
Navigator Project
Situation:
As National Grid ESO transitions to the NESO it will take on the role of Regional Energy Strategic Planners which will bring a focus on the alignment of Local Area Energy Plans and distribution network planning.
Complication:
Current regional distribution network future energy scenarios are produced by electricity distribution networks. Gas distribution networks do not have an equivalent activity Accordingly regional and local area energy planning in not informed by a balanced consideration of all energy vectors.
Solution:
An agile and easy to use Whole Energy Systems Pathway (WESP) tool with detailed temporal and spatial investment planning capabilities to enable a regional whole energy system planning capability which informs gas network planning as well as inform national regional and local planners in an objective evidence based. way
Project Volta
This project will undertake testing on technology for distributed production of low carbon hydrogen from natural gas biogas or other short chain hydrocarbons from waste. Which uses 90% less electricity than electrolysis of water and with 68% lower total energy costs.
The project will support early movers and convert gas from our network into a low carbon hydrogen solution. The compact and modular deployment of the technology enables hydrogen production systems to be installed directly at the energy user's site. These systems convert grid-supplied natural gas to hydrogen on demand eliminating the need for additional infrastructure or on-site hydrogen storage and leaves the rest of the network unaffected
Project GaIN
As the UK attempts to decarbonise residential heat to meet net zero by 2050 electric heat pumps along with heat networks are expected to play a key role. However it is generally accepted that no one technology will be able to meet the needs of all households. If we are to deliver affordable low- carbon heating in the residential sector we shall need as wide a range of technology options as possible to overcome the economic and technical challenges facing every customer.
Project GaIN (Gathering Insights) will explore alternatives to heat pumps and heat networks which can utilise the robust gas network and benefit from its current upgrade programme supporting the aims of DESNZ’s decarbonisation of heat roadmap. The project will discover and assess additional technology options where alternative solutions might be more costly or difficult to deliver; this will include LAEP system benefits as well as localised CAPEX and OPEX costs.
Futures Close Heat Programme (FC Heat)
To reach our national net zero targets by 2050 we need to decarbonise approximately 25 million homes in England. Domestic heating accounts for approximately 14% of the UKs entire emissions and significant investment is required to improve the energy efficiency of our housing stock. In addition there are major challenges associated with domestic decarbonisation:
- England has the most diverse housing stock in the UK. with 35% built before the end of WWII.
 - Sixty-four percent are owner-occupied and these homeowners need to have a good cost effective and efficient experience of home and heating upgrade as we move towards zero carbon homes.
 - Implementing heating upgrades to this ageing housing stock requires a ‘whole house’ approach therefore consideration must be given to the building fabric and heating system.
 
Retrofitting existing homes with electric heating systems or deployment of green hydrogen boilers offer potential solutions however the intricacies of deployment and installation are complex further research and development is required to learn more about installation performance of various heating options. Doing so will inform future domestic decarbonisation strategies.
H2 Rail
This project will explore the feasibility of integrating hydrogen train refuelling infrastructure to support the development of a hydrogen rail network. This has particular relevance to our network as some of the UK’s hardest to electrify rail routes are situated in Wales and South West England. The project will focus on these hard to electrify routes exploring H2’s potential role in enabling their decarbonisation. If successful this project can help the WWU network to become a proving ground for real-world delivery of impactful H2 rail technology. It is expected to provide information which can be used in planning strategic hydrogen pipeline routes and network repurposing plans and support regional energy planning.
The Impact of District Heating on Our Network
This project will investigate the potential impacts of district heating on the gas network whether its viable for the network to support district heating and what repurposing would be required.
Asset Compatibility Assessment Tool for Transmission
Following completion of Phase 2 of the H21 Hydrogen Ready Components project this project will look to extend the methodology developed under this project to encompass the assessment of assets operating above 7 barg. The assessment tool will be incorporated into the LTS Futures blueprint methodology for repurposing existing Natural Gas transmission assets to hydrogen. The scope will include transmission assets above 7 barg and up to the maximum transmission pressure of 94 barg and will focus on the conversion to 100% hydrogen. Assets in scope will cover both above and below ground assets and include bends valves regulators slam shuts relief valves and pig traps. Assets excluded include pipelines compressors and cast iron components.
NTS Pipeline Assessments Phase 2
This project will build upon previous work to inform decisions relating to the repurposing of National Transmission System pipelines for 100% hydrogen and hydrogen-natural gas blends. New input data will be generated and collated the assessment methodology will be refined and an alternative assessment method probabilistic will be utilised and the resulting network impact will be considered.
This project will generate the following benefits:
- More accurate assessment of the capability of the NTS to transport 100% hydrogen and hydrogen-natural gas blends.
 - Data on the impact of low percentage blend hydrogen on pipeline materials.
 - Standardised document for Engineering Critical Assessments (ECA) of hydrogen and hydrogen-natural gas blend pipelines and pipework.
 
Greater understanding on the effect of hydrogen on the design and operation of pipeline systems.
Equations of State for Net Zero Gases
In metering applications Equations of State (EoS) are mathematical models that are used to convert measured volumes to standard units. This enables transfer from volume to mass allowing customers to be billed and for the networked to be balanced in energy. Metering and network balancing cannot be performed in volume as it doesn’t account for relative varying gas component concentrations – and therefore CV.
The EoS currently used (AGA8) is acceptable for up to 5% hydrogen but after this point it’s uncertainty is unknown – meaning the network may be unable to maintain accurate billing or system balancing. This project will obtain experimental data for a range of net zero gases and compare the output of several EoS for accuracy against real measured NTS-representative conditions.
Carbon Dioxide Repurposing procedure for the NTS
The project described covers the development of a new repurposing process for NTS assets to transport gaseous phase carbon dioxide. The approach for repurposing the National Gas Transmission System (NTS) to transport carbon dioxide will need an innovative approach to meet the timelines for the net zero transition. There have been several projects undertaken to date to determine the interactions of carbon dioxide with the network assets. We are looking to determine if these activities are providing all the relevant data and evidence required for our network to transition.
Hydrogen Impact on NTS Welds
Laboratory and full-scale testing have demonstrated that hydrogen gas affects the fracture performance of pipeline steel welds. To avoid severe knockdown factors stipulated by existing hydrogen pipeline codes mechanical property data from welds tested in high-pressure gaseous hydrogen is required to enable optimised operation of the NTS in hydrogen.
National Gas Transmission have conducted a series of fracture toughness and fatigue crack growth rate tests on a wide selection of pipeline steels and welds representative of those used on the National Transmission System (NTS). A thorough review of the welds tested and how these compare to the wider population of welds in service on the NTS is required to provide further confidence to use this data in pipeline repurposing assessments and for new build design.
Hydrogen & Carbon Dryness Management
This Network Innovation Allowance (NIA) project investigated dew point management in hydrogen/natural gas blends pure hydrogen and carbon dioxide transmission pipelines. In the National Transmission System (NTS) which is currently a natural gas network the purity of the gas is carefully controlled via the network entry specification. Trace components such as water nitrogen oxides sulphur containing compounds oxygen and carbon dioxide have strict limits on their allowable levels in the network. This is done in part to ensure the gas delivered to end users meets the requirements of the customer but also to protect transport and storage systems. Purity specifications are being developed for hydrogen its blends with natural gas and for carbon dioxide (CO2). This project focused specifically on the water content within these gases in what concentrations it is likely to be acceptable the conditions at which it may condense in the network its interactions with other trace components and contaminants and the potential detrimental effect on the network.
Limiting moisture content and ensuring gas dryness is important for several reasons:
- Safety & Efficiency: Hydrogen’s efficiency as a fuel can be compromised by moisture. Water in hydrogen can affect the combustion process leading to a reduced efficiency for applications like gas turbines.
 - Corrosion: If dew points aren’t controlled effectively liquid can drop out of the gas phase and this moisture can cause corrosion in pipelines and hydrogen embrittlement. For CO2 pipelines this moisture can react to produce carbonic acid which can further corrode the pipelines.
 
The outcomes of the project should provide a clearer insight and strategy on how to effectively manage hydrogen and carbon dryness within the NTS ensuring that the gas remains within the required specifications for current and future demands.
The project was split into three work packages (WP):
WP1 focused on hydrogen and its blends initially reviewing the equations of state (EoS) that model the dew point temperature at varying water content and hydrogen/methane blend ratios. The impact on the network of liquid water formation in hydrogen was examined including the interaction with other trace components such as CO2 and H2S in particular the effect on welds and pipeline defects. Finally a summary of international standards for hydrogen purity highlighted the likely water content limits that could be expected by hydrogen users and thus provided by producers.
WP2 focused on CO2 its phase behaviour and the effect impurities have on this behaviour using the most appropriate equations of state. The detrimental effect of CO2 and liquid water contained within it on pipelines fittings and other parts of the network was reviewed.
WP3 focused on how the water content specifications could be managed on the network from the point of view of monitoring and controlling water dew point in the gases. The water content expected from various production techniques were reviewed and a high-level costing for the dehydration process for both CO2 and hydrogen was made.
Augmented Reality Futures Close
Augmented Reality (AR) technology will be used at Futures Close to convey and inform various audiences including vulnerable consumers about various property archetypes their construction heat loss and the type of retrofit solutions (heating systems controls fabric improvements) available to improve the level of domestic energy efficiency. AR will be used to inform educate and engage audiences on-site at Futures Close as well as off-site at conferences and meetings avoiding the need to facilitate multiple visits on site. Live data feeds will also be visualised illustrating room-by-room temperature humidity as well as other metrics providing an engaging interactive and informative asset for Futures Close.
Hydrogen AGI Pipework Integrity Monitoring Phase 2
This project proposes a structured approach to assess the integrity of AGI pipework for hydrogen service. It includes development of a screening tool based on representative AGI archetypes execution of ECAs to define flaw tolerances and inspection intervals and evaluation of NDT capabilities with respect to desired AGI performances. The project also reviews integrity management software to support increased digitalisation and monitors emerging technologies for hydrogen-related NDT developments.
High Pressure Venting and Flaring Demonstration for Net-Zero Gases Transportation
National Gas Transmission (NGT) own and operate the UK’s National Transmission System (NTS) transporting natural gas from terminals to end users. NGT have ambitions to repurpose the existing to transport hydrogen and hydrogen blends. Understanding the impact of hydrogen on our existing assets is a key enabler for this.
This project will conduct design of flare for hydrogen and its blends and vent system for hydrogen its blends and carbon dioxide and offline physical testing to provide evidence that hydrogen / hydrogen blends could be flared and vented safely and environmentally in for NTS.
Simplifying Low Carbon Heat
The study will identify the significant technical fiscal and political challenges current heat decarbonisation strategy faces and outline an alternative approach involving greater use of hybrid devices that offers both lower consumer costs and greater potential to cut carbon emissions than projected based on current policy and consumer behaviour. Arguments will be presented through four linked pieces of analysis:
- An examination of the costs of the Government’s Clean Heat Market Mechanism (a key policy intervention to promote heat pumps in the appliance market).
 - An approximation of the additional network upgrade requirement early transfers to heat pumps represent in comparison to hybrids.
 - A view on what extending the Green Gas Levy beyond its current cut-off date could do to the emissions intensity of the gas distribution network (by encouraging more biomethane production).
 - Voter polling that analyses their view on different approaches to heat decarbonisation.
 
The paper will include a series of policy recommendations for government to take forward in order to enhance progress on decarbonisation of domestic heat.
Deblending Rollout Strategy Phase 2
National Gas Transmission (NGT) are committed to reducing emissions from the operation of the National Transmission System (NTS) and eliminating emissions by 2050. The transition to hydrogen provides an opportunity to reduce carbon and utilise the network for hydrogen refuelling for transport. The HyNTS Deblending for Hydrogen Transport project has involved the development of a UK-wide rollout strategy from ERM that lays out demand clustering and potential locations for deblending supplied refuelling for transportation mapped against the NTS.
The project will aims to obtain further information on NRMM maritime cars LGVs and mobile power to fully understand the hydrogen demand. It will also review the existing rollout strategy to ensure it is accurate and full captures the current hydrogen market given the changes in this landscape
Network Policies and Procedures – Development Roadmap
UK gas networks are managed and maintained using an extensive suite of policies policies standards and procedures. These documents have been developed gradually over decades of gas network operation however the transition to hydrogen necessitates a wholesale review and update of all existing documents. There is much commonality between the networks’ documents and therefore it would be most efficient to update these documents in a coordinated way to avoid the unnecessary duplication of effort.
1 mol% Oxygen exemption for the NTS
This study builds on previous technical work undertaken to support the 1 mol% oxygen Gas Safety Management Regulations (GSMR) amendment up to 38 barg. The work plan was targeted to focus on aspects that are more pertinent to the National Transmission System (NTS) including information from the current developments for European standards and supporting information from published studies on the impact of oxygen. The scope covered:
- Integrity – focusing on changes to corrosion rates and developing the understanding that increased oxygen content may have on the different factors that impact on corrosion rates.
 - Measurement – considering the effect of higher oxygen content on the ability of the different analysers and equipment to measure accurately.
 - Gas quality – reviewing the impact on key gas quality parameters and considering the potential impact on trace components that may be present.
 - Pipeline “dryness” – investigating the impact of water dew point and water content and the effect of increased oxygen.
 - Gas mixing – recognising that the flow from biomethane injection will in most cases be lower than the main pipeline flow deduce if higher oxygen content gas could be transported long distances through the pipeline network.
 - Gas storage – building on available information to assess if higher oxygen content impacts on gas storage.
 - Gas utilisation – identifying if there are end users that could be significantly impacted by elevated oxygen limits.
 - Intermediate limits – considering if an intermediate limit would be preferential.
 
The scope was developed to provide technical evidence to understand the implications for the NTS recognising that this introduces additional factors that were not considered in the previous studies.