Projects
MASiP Phase 3 (Qualification Testing & Integrated System Development)
The MASiP Phase 3 project aims to develop test and qualify a new pipeline system (MASiP) as a safe and cost-effective alternative to traditional steel pipelines for pipelines operating above 7 bar capable of transporting natural gas biogas and up to 100% hydrogen. Building on Phases 1 and 2 this phase focuses on the technical assessment of tight radius bends tees and damage repair as well as the integration of live monitoring systems in a prototype operational environment. Comprehensive validation will include connectors coatings repair systems hot-tapping solutions ground movement tolerance durability and design life testing. All testing will be carried out in accordance with IGEM API and ASME standards supported by statistical and independently witnessed trials to generate robust qualification data for industry adoption. The key deliverable is a validated deployable hydrogen-ready pipeline system that is safe compliant and cost-effective offering potential cost savings of up to 50% compared with steel. The project outcomes will support the UK’s RIIO-GD2 strategy and 2050 net-zero targets by enabling hydrogen-ready infrastructure improving monitoring installation efficiency and long-term reliability while also providing the evidence base required for regulatory policy and industry acceptance of alternative pipeline materials.
Human Behaviours and automation
This project will produce valuable insights into understanding the relationship between human behaviours and the utilisation of safety devices with automated functionality. This follows the work done on hydrogen risk mitigations which included technology such as hydrogen detectors with automated functionality to remotely notify the emergency call centre to dispatch an engineer to the detected leak. In their review of this work HSE have asked if the assumption that consumers will continue to act the same knowing the device will be doing some automated will change the validity of the modelling assumptions. This project will address that query and build on our own understanding of consumer insights; something which could add a depth of value to other projects exploring automated safety systems.
Variable Blends Operational
Blending hydrogen and natural gas into the NTS has some clear benefits for supporting the transition of the energy industry in the UK to net zero in 2050 and is seen as an important intermediary step towards that goal.
It is expected that initially a low percentage hydrogen blend will be accepted onto the National Transmission System with this potentially increasing up to 20% hydrogen blends being accepted. However whether a hydrogen producer has to put in a specific blend percentage has not been determined and is unlikely. Therefore NGT need to develop the system to be able to effectively manage variable blends in addition to 2% 5% and 20% hydrogen blends.
This project will look into 4 key areas that might be directly impacted by hydrogen blend variability and require impact and risk assessments followed by investigations resulting in solution mapping and mitigation strategies being proposed. The key topics include establishing permissible limits for variability investigating how to manage interconnection from NTS to other countries understanding the effects of variability on stratification potential in the network and investigating the effects of variability on combustor/compression modelling.
HyNTS Operational Methodologies - Valve Performance Assessments
This project aims to assess and enhance the hydrogen readiness of ball valves within the (NTS) by conducting maintenance strategy evaluation with material performance analysis. It involves reviewing current valve operations diagnostics and OEM maintenance guidance alongside a literature review of commonly used valve materials to understand their behaviour under hydrogen exposure. The project valve performance testing and finite element analysis of existing valve designs to evaluate structural integrity. Findings from these activities will provide actionable recommendations for updating NGT’s valves maintenance strategies diagnostic tools and design standards to support safe and efficient hydrogen service deployment
HyNTS Operational: Qualification of Pressure Vessels
The National Transmission System (NTS) uses dry scrubbers filters and strainers to remove contaminants in the gas stream. Introducing hydrogen raises new challenges due to its distinct properties which could affect the performance and efficiency of these existing cleaning assets. We completed a project that investigated the compatibility of these assets with hydrogen and hydrogen blends to ensure gas quality without compromising the safety or efficiency. An outcome was to get a deeper understanding of the fracture and fatigue behaviours of these equipment to better understand whether hydrogen will impact the material properties. This assessment will undertake a targeted CTR analysis to inform a future potential physical test programme.
Gas Inhibitors for Hydrogen Pipelines - Phase 3
The Phase 3 project on gas inhibitors for hydrogen pipelines aims to translate lab-scale findings into practical applications for the UK’s National Transmission System. It focuses on validating the effectiveness of oxygen and alternative inhibitors in mitigating hydrogen embrittlement addressing unresolved safety and integrity concerns from previous phases and designing a plan for safe integration into existing infrastructure. The project includes physical demonstration planning and network design to assess technology implementation.
Novel Unified Viewer for NGT Network Performance Twin
As part of the National Gas Network Performance Twin program this project is designed to demonstrate a scalable digital twin platform focused on improving infrastructure resilience supporting hydrogen integration and addressing climate adaptation across the National Transmission System (NTS). This initiative integrates three strategic components: Collaborative Visual Data Twin (CVDT) – a 3D BIM-based digital twin platform that visualises and monitors asset performance in real time. HyNTS Dataset Automation – a structured automated geodatabase that supports hydrogen readiness assessments and asset integrity modelling. Flood Twin – a predictive flood simulation model that enables scenario-based risk analysis and resilience planning for Above Ground Installations (AGIs).
Girth Weld Inspection of Steel Pipelines for Repurposing to Hydrogen Service
Repurposing of natural gas pipelines made of carbon steel for use with hydrogen blends requires a fitness-for-service analysis as part of the hydrogen use safety case. Girth welds of an unknown quality exist in the Local Transmission System (LTS). In hydrogen service these welds would have a greater susceptibility to fracture failure due to material embrittlement caused by interaction of steel material with hydrogen.
Current in-line inspection methods do not routinely inspect girth welds for defects. This project aims to test the available technology for its capability to detect defects and cracks in girth welds. This will provide valuable data for engineering critical assessments required to repurpose natural gas pipelines. It will also inform about the state of art inspection techniques and whether they can be used as a tool for repurposing pipelines.
Hydrogen Combustion Engine Feasibility Study
This project will see Cenex deliver a feasibility study on hydrogen internal combustion engines (H2ICE) as an alternative to diesel and Fuel Cell Electric Vehicle (FCEV) within WWU’s operational fleet. This project comprises three distinct work packages (WPs) each feeding into a holistic assessment of H2ICE applicability across WWU’s vehicle assets. Cenex will apply its expertise in fleet decarbonisation alternative fuel technologies legislative policy analysis and techno-economic modelling to meet WWU’s scope requirements. All outputs will be suitable for internal strategic review and for sharing externally with partners and stakeholders.
Blending Management Approach – Phase 2
The conversion of the National Transmission System into a hydrogen transmission network has been widely discussed and it is recognised that blending of hydrogen and natural gas in the network is an important intermediary step towards that goal. It is therefore important to understand how the NTS will operate with a mix of natural gas and variable blends up to 20% hydrogen.
The Blending Management Approach (BMA) Phase 2 project will explore the operational safety and strategic implications of introducing low-level hydrogen blends into the National Transmission System (NTS) with a particular focus on storage interactions emergency response scenarios and long-term network management strategies. This phase aims to deepen understanding of how hydrogen blends interact with existing infrastructure and protocols.
Scaling Hydrogen with Nuclear Energy (SHyNE)
Significant efforts are required to support the transition of our energy systems moving away from carbon-intensive fuels such as coal diesel petrol and gas towards cleaner sources of power generation such as wind solar nuclear and hydrogen. There is a potential for hydrogen to play a hugely significant role in our energy system the extent of which will be driven by a range of factors including the ability to transport it to where it is needed. There have been recent positive decisions for hydrogen’s potential uses in blending transportation domestic heating and industry. To produce sufficient hydrogen to meet this potential need it will be important to increase and diversify hydrogen production methods.
As nuclear is a reliable and consistent source of clean energy that is unaffected by external factors such as the weather Northern Gas Networks and Wales and West Utilities would like to investigate the possible use of nuclear power as a method of delivering the future increased demand in hydrogen production. This project will explore the opportunity for hydrogen production from nuclear to support a net zero transition across the gas network.
Benefits of nuclear-enabled hydrogen (NEH) in the context of gas distribution networks (GDNs) will be explored building on the established benefits of nuclear energy production.
The overall project outcome is that NGN WWU and other stakeholders are sufficiently informed to determine whether further investment and integration of nuclear-enabled hydrogen to transition plans are justified and how a potential first project could take its next step to deployment through securing technology licences sites off takers and financing.
Risk of Microbial Corrosion due to Hydrogen Transportation
National gas pipeline systems rely heavily on protective coatings and cathodic protection to prevent corrosion and ensure long-term integrity. Coatings act as the primary barrier against environmental exposure while cathodic protection—typically using sacrificial anodes or impressed current systems—supplements this by mitigating electrochemical reactions that cause metal degradation. The introduction of hydrogen into these pipelines as part of decarbonization efforts presents new challenges. Hydrogen can permeate coatings and accelerate corrosion processes especially in the presence of certain microbes. Microbiologically induced corrosion (MIC) driven by bacteria such as sulphate-reducing bacteria (SRB) can be exacerbated by hydrogen which some microbes use as an energy source. This interaction may compromise both the coating and cathodic protection systems necessitating advanced materials and monitoring strategies to maintain pipeline safety and performance in a hydrogen-integrated future.
Maximising the use of a decommissioned network
This project constitutes a research study exploring innovative opportunities to repurpose decommissioned gas pipelines and associated assets to support future energy systems and critical infrastructure needs.
By exploring diverse repurposing options beyond hydrogen and carbon dioxide it is hoped that it will be possible to identify potential growth areas for gas pipeline assets that in some areas may otherwise become stranded. The study will include a review of economic viability technical feasibility and regulatory considerations for any identified options.
Sustainable Vehicle Transport
The Sustainable Vehicle Transport (SVT) feasibility study project will undertake a green gas refuelling study specific to SGN’s network areas in Scotland and Southern incorporating biomethane in the form of bio-CNG and the potential for a future hydrogen option. Along with heat transport is a key sector to decarbonise on the journey to net zero. Battery electric vehicles are well suited to small vehicles but for heavy goods vehicles (HGV) and larger commercial vehicles (LCV) like the type that make up the majority of SGN’s operational fleet this may not be the most appropriate technology given the range and on-board power requirements.
Impact of Hydrogen and on NTS Oils & Greases – Phase 2
Phase 1 of the project compiled a list of oils and greases considered to be gas-facing on the NTS along with identifying functional and material property requirements of these products. Proposed standards and testing methodologies were also outlined to inform the next phase of the project. In Phase 2 the project will proceed with additional required activities to ensure the safe utilisation of NTS oils/greases in a hydrogen pressurised environment. These activities include laboratory testing for lubricants and functional testing for sealants to assess degradation and performance of these products in hydrogen. Subsequently requirements for in-service monitoring will be identified.
Hydrogen Ignition Risk from Static and Autoignition (HIRSA) – Stage 3
The HIRSA programme is assessing ignition risks for the transition to hydrogen with Stage 3 focusing on high pressure static risks including shockwave ignition and rapid adiabatic compression. This research supports the safe integration of hydrogen into gas networks.
Development of Technical Readiness for Bends and Tees
Hydrogen design codes require fracture mechanics based design and qualification for high stress service. Procurement of a number of Long Lead Items (LLI) is required to construct commission and operate hydrogen networks. A number of these LLIs including induction bends and barred tees remain at a low technical readiness.
This project will carry out fracture toughness testing in a hydrogen environment to increase the technical readiness support the supply chain and achieve operational schedules.
Rising Pressure Reformer Study
This project will assess the application of Rising Pressure Reformer (RiPR) technology to produce a tuneable blend of biogenic methane and hydrogen supporting the decarbonisation of gas networks. The project will focus on the how control of the gas produced would fit with requirements for network injection and assessing locations for connection.
Stopple-Live trial (Phase 2)
The Stopple technology is a flow stop tool essential for major projects and emergency works across the LTS and NTS gas network. Its capability was tested in 100% hydrogen within a helinite environment in line with LTS Futures parameters as phase 1. This project focuses on validating flow-stopping technology as an additional deliverable with LTS Futures live hydrogen trial on the Granton to Grangemouth pipeline as a welded tee and hot-tapping operations is already being carried out. The trial will confirm the Stopple train’s effectiveness as a double-block and bleed solution for a 100% hydrogen system which will be available for the UK Gas Network. The findings will provide critical insights into the safe and efficient operation of the hydrogen networks supporting the transition from natural gas to hydrogen.
Hydrogen Permeation through the Oxide Layer Phase 1
This project is looking to address uncertainties surrounding LTS pipeline materials by investigating the effect of the oxide layer on hydrogen permeation rate for steel pipelines. This project will also investigate the formation of an oxide layer inside the pipe at different temperatures as well as how the microstructure of the pipeline steel and condition of the oxide layer affect permeation for different grades of steel. It is critical this relation is better understood as these uncertainties are currently hindering our ability to fully and accurately assess the repurposing of the LTS. The outcomes of this project have the potential to increase cost-savings and improve confidence in the existing network to carry hydrogen including blends.