Net zero and the energy system transition
Hydrogen Ignition Risk from Static and Autoignition (HIRSA) Stage 2B – Static Generation experimentation
The key subject of HIRSA stage 2 projects is to understand if using hydrogen in the gas network will result in an increased likelihood of ignition from static discharge generated by particulates in flowing gas. Building on stage 2A stage 2B will provide further experimental testing aimed at determining the absolute difference in electrostatic charge generated identify whether any external factors impact one gas more than the other and to control the factors affecting generation of the charge. The outputs of this work should provide the industry with a better understanding of the potential change in ignition risk when switching from Natural Gas to hydrogen and will also highlight relevant mitigations to manage this risk.
Welding Residual Stress Measurements and Analysis for Gas Pipelines
This project concerns the research into welding residual stress values and the effect that they have on the overall pipework repurposing assessment route described in relevant hydrogen standards. Currently overly conservative values need to be applied for welding residual stresses in any repurposing assessment. This project aims to build evidence on actual and modelled residual stresses seen within the pipelines industries with a focus on natural gas pipelines. As the welding residual stress is a critical aspect of the fracture mechanics assessment any improvements which can be gained would have an overall positive impact on the assessment results.
Hydrogen Rollout Assessment
This project will help WWU to understand considerations for 100% Hydrogen Rollout at a town scale to inform future activity on preparation for repurposing. Areas will be chosen which are representative of different networks housing stock and demographics which will require different approaches and engagement.
Asset Records Readiness for Hydrogen
The project will evaluate and deliver a plan that ensures our asset records are suitably complete to support the net zero transition.
The project will reduce uncertainty and risk and provide a more realistic proximation of asset data.
The HSE has indicated that it will be unable to support a network’s hydrogen safety case until they receive “a clear plan for checking unknown assets and how networks will ensure that only suitable materials are present in the network”. This includes our transmission pipelines.
Additionally for the marginal extra effort it would be prudent to ensure the completeness of our asset records is sufficient for us to either plan for the conversion to hydrogen or decommission sections as users switch to other heating technologies.
Commercial Vehicle Fleet – Development of Total Cost of Operation Model
Decarbonisation of UK transport and the related Zero Emission Vehicle (ZEV) mandate requires companies to transition their commercial vehicle fleets to Battery Electric Vehicles (BEV) or alternative new emerging technologies (e.g. FCEC). As an operational utility network with responsibility for public safety WWU’s fleet undergoes a more challenging and varied range of duty cycles than most commercial fleets includes vehicles that are required to provide on-site power and must be capable of meeting WWU’s statutory duty to respond quickly to Public Reported Escapes.
Within this challenging operational context WWU must deliver a fleet transition at the lowest feasible cost to assure value for money for our customers. This is further complicated by the need to plan the fleet transition while the associated technological and policy landscape continues to evolve in parallel. Although the learnings generated from the project will be specific to WWU’s fleet as a case study they will be applicable to any networks with an operational fleet.
To assure a cost-effective transition and derisk future operations WWU require a Total Cost of Operation (TCO) model. This will be specifically targeted at our particular operational context capable of assessing the costs and capabilities of a range of ZEV options and crucially must be easy for staff to adopt for internal use and update in the future as new data and/or technologies become available.
The purpose of this project is to provide WWU with a TCO model that addresses our specific operational requirements ensuring that plans and investment decisions will be grounded in real-world technology assessments and our operational fleet data.
Probabilistic Fitness-for-Service Assessment of Hydrogen Pipeline Girth Welds
Repurposing of natural gas pipelines made of carbon steel for use with hydrogen blends requires a fitness-for-service analysis as part of the hydrogen use safety case. Girth welds of an unknown quality exist in the Local Transmission System (LTS). In hydrogen service these welds would have a greater susceptibility to fracture failure due to material embrittlement caused by interaction of steel material with hydrogen.
Current inspection methods do not routinely inspect girth welds for defects. Deterministic defect assessment models require the use of conservative assumptions for defect sizes material properties and loading. This can lead to overly pessimistic conclusions about the suitability of pipelines with girth welds for use with hydrogen.
More detailed probability-based assessments are required to reduce the inherent pessimism in deterministic calculation methods. This would provide confidence of the safety and allow for greater use of the LTS with hydrogen and contribute to a quicker and cheaper energy transition for the UK gas network.
Materials Qualification for Hydrogen Pipelines
Current IGEM standards for requirements of qualification testing of onshore pipelines do not contain guidance on specific tests for hydrogen. SGN has engaged PIE to develop a material qualification procedure for inclusion in standards for assets in hydrogen service
When completed the project will identify relevant criteria for fatigue and learning from this project can be applied to other operations to facilitate safe transition to 100% hydrogen
Alt Pipe
As the owner of the National Transmission System (NTS) National Gas is committed to responsibly managing our redundant assets in a manner that contributes to a sustainable lower-carbon future by decommissioning them responsibly refurbishing for re-use where viable and/or or changing their purpose where possible. This discovery project will identify decommissioned elements of redundant pipework on the transmission system which are unlikely to be used for refurbishment or part of any wider repurposing of the core network and explore the potential of repurposing these for alternative uses including the storage and/or transmission of electrical energy heat fuels water and data.
The Potential of Biomethane to Accelerate the Decarbonisation of UK HGVs
The following is a proposed outline for a report on the decarbonisation benefits and potential of biomethane in the UK Road Haulage sector.
The report will position biomethane as:
- A complimentary technology to zero tailpipe emission vehicles that offers faster decarbonisation potential due to the near-term infrastructure scalability of the technology and the suitability for long distance and non-fixed route logistics.
- A cost-effective way to reduce Carbon emissions by over 84% over the next 15-20 years whilst zero tailpipe emission technologies are developed and the supporting infrastructure is deployed.
- An enabler to the transition to zero tailpipe emission vehicles by offering reduced carbon abatement costs that in turn can generate funds to invest in zero emissions infrastructure and vehicles.
It will serve as a reference document for discussions with industry stakeholders governments and regulators.
Understanding the value of remote detectors
The statistical ‘value’ (i.e. risk reduction and cost) of remote hydrogen detectors has been determined through statistical based projects as part of the hydrogen heating programme (HHP). The cost has been shown to outweigh the risk however given hydrogen is not a mature heating solution the cost can be justified in response to risk appetite from key stakeholders such as consumers. This risk appetite is assumed. There is currently no analysis (qualitative or quantitative) into consumers attitudes towards the ‘value’ of remote detectors. This project will begin to explore the perception of risk reduction from remote detectors to be used to compliment the statistical based analysis to paint a fuller picture towards the utilisation and crucially the value of remote detectors.
Demonstrating Downstream Procedures For Hydrogen
This project involves a comprehensive set of tasks aimed at implementing and validating a domestic safety system for hydrogen use including excess flow valves.
Futures Close Heat Programme (FC Heat)
To reach our national net zero targets by 2050 we need to decarbonise approximately 25 million homes in England. Domestic heating accounts for approximately 14% of the UKs entire emissions and significant investment is required to improve the energy efficiency of our housing stock. In addition there are major challenges associated with domestic decarbonisation:
- England has the most diverse housing stock in the UK. with 35% built before the end of WWII.
- Sixty-four percent are owner-occupied and these homeowners need to have a good cost effective and efficient experience of home and heating upgrade as we move towards zero carbon homes.
- Implementing heating upgrades to this ageing housing stock requires a ‘whole house’ approach therefore consideration must be given to the building fabric and heating system.
Retrofitting existing homes with electric heating systems or deployment of green hydrogen boilers offer potential solutions however the intricacies of deployment and installation are complex further research and development is required to learn more about installation performance of various heating options. Doing so will inform future domestic decarbonisation strategies.
Cominglo – Blended CV Measurement Point
This project seeks to improve the accuracy of CV measurement in gas networks which distribute blended gas streams. Element Digital Engineering will address this by first studying the physics of gas blending in the gas network using Computational Fluid Dynamics (CFD). A wide range of simulations will enable the effects of different designs and mixing technologies to be understood in relation to the various gases under consideration. The predictions of these CFD studies will be validated through the design and development of a rig to simulate blending in the network. The overall results of these studies will be used to develop a tool that can be deployed within the gas networks to facilitate the accurate prediction of co-mingling and subsequent CV measurement points supporting the design of blending systems.
Enhancement of the anaerobic digestion process for biomethane production
The UK Government recognised that domestic biomethane production can play a significant role in decarbonising energy supplies. However biomethane production plants face technical and operational challenges. Currently the content of biomethane within biogas produced from the anaerobic digestion (AD) process is often only around 50%. This partial conversion results in lower yields for AD operators and an increase in costly gas scrubbing requirements. The increased presence of impurity gases also increases requirement for propanation to increase the calorific value high in both cost and carbon footprint.
This project seeks to address these challenges through the injection of green hydrogen into the AD process in specific quantities and at specific times to achieve greater conversion of carbon dioxide to biomethane within the acetogenesis stage of the AD process thereby increasing the yield whilst reducing the need for gas scrubbing and propanation.
H2 Housing Design
This project will explore ventilation and explosion relief requirements for housing currently used on the gas network for pressure regulating installations (PRIs). Housings currently provide security from a range of factors from weather to vandalism while also providing the necessary relief requirements in the event of an emergency. The understanding of these requirements for Natural Gas has been developed however work conducted in the IGEM TD/13 hydrogen supplement did not fully address whether these design specifications are suitable for use with Hydrogen. This multi-stage project will first explore the design specifications listed in industry standards (IGEM/TD/13 GIS/PRS/35 SGN/SP/CE/10 etc) and understand which of these may be appropriate and which may require redesign. The latter stage of this project will take the design specifications deemed to be unsuitable for use with hydrogen and conduct testing to develop revised design specifications which would provide the necessary relief requirements.
Decentralised Alliance for South West Hydrogen (DASH)
Early cluster projects will not benefit I&C customers that are located away from industrial clusters and are traditionally more distributed in nature. These customers are unlikely to have access to hydrogen infrastructure developed through the primary industrial clusters. This presents the need for an alternative solution.
This project will explore the concept of how a larger number of low-volume hydrogen producers can support I&C customers in the absence of natural ‘clustering’ and high-volume production by using the South West region of WWU’s network as a case study. This will be done by exploring the whole systems concept of a gas network which is driven by distributed green hydrogen production at strategic locations where there is access to both gas and electricity grid infrastructure.
Asset Compatibility Assessment Tool for Transmission
Following completion of Phase 2 of the H21 Hydrogen Ready Components project this project will look to extend the methodology developed under this project to encompass the assessment of assets operating above 7 barg. The assessment tool will be incorporated into the LTS Futures blueprint methodology for repurposing existing Natural Gas transmission assets to hydrogen. The scope will include transmission assets above 7 barg and up to the maximum transmission pressure of 94 barg and will focus on the conversion to 100% hydrogen. Assets in scope will cover both above and below ground assets and include bends valves regulators slam shuts relief valves and pig traps. Assets excluded include pipelines compressors and cast iron components.
Scaling Hydrogen with Nuclear Energy (SHyNE)
Significant efforts are required to support the transition of our energy systems moving away from carbon-intensive fuels such as coal diesel petrol and gas towards cleaner sources of power generation such as wind solar nuclear and hydrogen. There is a potential for hydrogen to play a hugely significant role in our energy system the extent of which will be driven by a range of factors including the ability to transport it to where it is needed. There have been recent positive decisions for hydrogen’s potential uses in blending transportation domestic heating and industry. To produce sufficient hydrogen to meet this potential need it will be important to increase and diversify hydrogen production methods.
As nuclear is a reliable and consistent source of clean energy that is unaffected by external factors such as the weather Northern Gas Networks and Wales and West Utilities would like to investigate the possible use of nuclear power as a method of delivering the future increased demand in hydrogen production. This project will explore the opportunity for hydrogen production from nuclear to support a net zero transition across the gas network.
Benefits of nuclear-enabled hydrogen (NEH) in the context of gas distribution networks (GDNs) will be explored building on the established benefits of nuclear energy production.
The overall project outcome is that NGN WWU and other stakeholders are sufficiently informed to determine whether further investment and integration of nuclear-enabled hydrogen to transition plans are justified and how a potential first project could take its next step to deployment through securing technology licences sites off takers and financing.
The Impact of District Heating on Our Network
This project will investigate the potential impacts of district heating on the gas network whether its viable for the network to support district heating and what repurposing would be required.
Determining Future Energy Demand of B&R Team Vans with Full On-Board Power
Wales & West Utilities is undertaking a major programme of change to support decarbonisation and deliver a Net Zero gas network. Decarbonisation of the vehicle fleet is an integral component of that programme.
WWU operates a fleet of nearly 1400 commercial vehicles the majority of these being vans up to 3.5 tonnes GVW. Our fleet – mostly diesel-fuelled - plays a crucial role in providing a safe and efficient service. In addition to our vehicle fleet WWU operates ~ 900 items of mobile plant including mini diggers and a wide range of trailers many of which are specialised.
WWU vans carry a wide range of power-operated tools and equipment some of this currently being powered by hydrocarbon fuels some by electricity and some by compressed air. Approximately a third of our van fleet (~400 units) is equipped with ‘full on-board power’ – a compressor and generator mounted under the van floor and mechanically driven by the diesel engine and operating as a source of on-site power.
This group of vehicles primarily supports below-ground network repair and replacement activity: it is a significant energy consumer so to help us understand how we can make an operationally cost-effective transition to zero emissions it is the on-site energy requirements of the tools and equipment powered by this group that Cenex will evaluate for this project. This evaluation will provide information which can take account of (and feed in to) a range of different scenarios for the fleet in the future such as changes to the number and type of vans allocated to particular teams and projects.