Projects
Accuracy of electronic volume conversion systems when metering blends of hydrogen and natural gas
This project focuses on ensuring accurate volume conversion within gas metering processes as hydrogen is blended into the natural gas network across Great Britain. Accurate measurement is essential for fair billing and maintaining customer trust during the energy transition. The project will study real world metering installations assess potential errors caused by hydrogen blending and develop practical mitigation strategies. Findings will inform updates to industry guidance (IGEM/GM/5) supporting regulatory compliance and operational integrity.
CO2 Capture and Methanation Feasibility Study
CO₂ utilisation in the UK remains technically and commercially uncertain. Dispersed emitters and biogenic sources are largely excluded from industrial CCUS clusters leaving a gap in scalable cost-effective carbon management solutions. This project will conduct a Desktop feasibility study covering SGN’s operational regions and local emitters within ~30 mile radius of candidate biomethane sites.
- Stakeholder and vendor engagement with technology providers
- Technical and economic modelling of capture and utilisation systems including mass and energy balances CAPEX/OPEX estimates and sensitivity analysis on CO₂ and hydrogen pricing.
- Local market assessment to identify potential CO₂ emitters and offtakes within 30 miles of candidate biomethane or EfW sites.
Development roadmap defining next steps funding opportunities and conditions required to progress to demonstration phase.
Network Intelligence: Bio- Methane Retractable Probe
The Retractable Probe directly tackles a critical constraint in biomethane integration: the disconnect between modelled and actual network capacity during low-demand periods. By enabling real-time high-resolution flow data from retrofitted PRIs this innovation unlocks latent capacity allowing for more confident dynamic flow commitments. With proven international precedents and a low-cost scalable design the probe offers a transformative step toward decarbonising the UK’s gas infrastructure—turning data scarcity into actionable intelligence and accelerating the transition to a greener more resilient energy system.
HyProximity
This project aims to develop a robust evidence-based framework to support the introduction of standardised separation distance tables for 100% hydrogen similar in format and function to those in IGEM/TD/3 for natural gas and hydrogen blends. This will address a gap in current standards for hydrogen. The Institute of Gas Engineers and Managers (IGEM) are providing resource to support the project and to update any necessary standards.
GDN Gas Quality Forecasting
This project aims to develop a means of forecasting gas quality at the NTS offtakes which will support current arrangements for target Calorific Value (CV) setting allowing networks to more accurately provide target CVs to biomethane producers and reducing sudden changes in targets sent to biomethane sites which can cause operational problems. Going forward gas quality information on CV and potentially Wobbe will also assist the GDNs in managing hydrogen blend.
Hybrid Heat Systems (HHS) Acceleration Route
Project will deliver strategic analysis and recommendations to support the accelerated adoption of Hybrid Heat Systems (HHS) in GB. This includes assessing technology options commercial models stakeholder perspectives and system integration pathways. The work will result in actionable insights clear positioning of HHS within the wider decarbonisation strategy.
Hydrogen Ignition Risk from Static & Autoignition – Stage 2B
The key subject of HIRSA stage 2 projects is to understand if using hydrogen in the gas network will result in an increased likelihood of ignition from static discharge generated by particulates in flowing gas. Building on stage 2A stage 2B will provide further experimental testing aimed at determining the absolute difference in electrostatic charge generated identify whether any external factors impact one gas more than the other and to control the factors affecting generation of the charge. The outputs of this work should provide the industry with a better understanding of the potential change in ignition risk when switching from Natural Gas to hydrogen and will also highlight relevant mitigations to manage this risk.
Human Behaviours and automation
This project will produce valuable insights into understanding the relationship between human behaviours and the utilisation of safety devices with automated functionality. This follows the work done on hydrogen risk mitigations which included technology such as hydrogen detectors with automated functionality to remotely notify the emergency call centre to dispatch an engineer to the detected leak. In their review of this work HSE have asked if the assumption that consumers will continue to act the same knowing the device will be doing some automated will change the validity of the modelling assumptions. This project will address that query and build on our own understanding of consumer insights; something which could add a depth of value to other projects exploring automated safety systems.