Projects
Clean Power Flexibility Investigation
Clean Power 2030 (CP2030) aims for a fully decarbonised electricity system using unabated gas only as backup. This introduces an important challenge: how can the gas transmission network remain viable and deliver flexibility during extreme demand events despite not being utilised most of the time? This project aims to understand how to sustain the gas network technically and economically in a low average high peak demand future focusing on the interaction between gas and electricity systems.
Gas Transmission Data Sharing Infrastructure
This project will entail a feasibility study to assess the viability of developing a secure scalable and interoperable data sharing infrastructure for National Gas Transmission (NGT) supporting regulatory compliance stakeholder access and alignment with NESO’s DSI initiative. The main objective is to gain a better understanding of how we share data currently and how this will change moving forward both within established participants and enabling new participants and stakeholders to benefit from National Gas’s data. This will support the wider NESO led DSI initiative. Using two NGT data systems as a use case for this study
Asset Cortex – Generative AI for asset hierarchy
The Asset Cortex project is a Generative AI initiative by National Gas Transmission (NGT) aimed at transforming its legacy 4-level asset hierarchy into a deeper ISO 14224-compliant structure. This Proof of Concept (PoC) will explore the feasibility of using AI to infer component-level details from system-level data such as pressure and age enabling automated hierarchy generation. The project supports RIIO-GT3 objectives including predictive maintenance digital twin creation and improved asset lifecycle visibility. It will also enhance integration with systems like SAP and Copperleaf and streamline field force operations. Key phases include requirements capture data mapping AI model development benchmarking against manually collected data and final reporting. Grasby Bottom and Hatton Multi Junction sites will serve as testbeds. The project is expected to reduce manual effort improve scalability and lay the foundation for broader digital transformation. It will also inform IT infrastructure needs and data governance strategies. While the current phase focuses on feasibility successful validation could lead to full-scale deployment supporting NGT’s strategic goals around automation cost efficiency and sustainability. Asset Cortex is positioned as a foundational enabler for future infrastructure planning and operational excellence across the gas network.
H100 Barhole Trials for Hydrogen Network Operations
This project will focus on barholing operations conducted after an emergency gas escape within the H100 Fife Distribution Network Operations. The scope will consider H100 scenarios specifically the establishment of a new distribution network to deliver Hydrogen to selected properties in the conversion area. The minimum pressure for the H100 Fife Distribution network is 27 mbar and the maximum pressure is 75 mbar. The aim of this project is to provide further evidence to support SGN operations on the H100 distribution network during emergencies and any future trials or broader rollouts of Hydrogen.
Steer Energy has been identified as a suitable contractor for executing this project due to their extensive expertise in this field and their previous work on the Barhole Trials and ITL Haldane Drill Isolator project. Steer has a proven partnership with SGN and the wider gas industry offering a variety of services including experimental lab testing training and testing facilities.
Hydrogen Blending: Direct Injection Feasibility Study
This project has been initiated to assess the technical and commercial feasibility of direct hydrogen injection into the gas distribution network at 5% and 20% by volume. It supports the broader Market Frameworks appraisal by providing the evidence needed to evaluate whether both System Entry Models direct injection and pre-blending are feasible under varying network conditions.
The need for this study was identified through the Hydrogen Blending Implementation Plan which outlined two technical approaches for hydrogen connections: injecting hydrogen directly into the network or pre-blending it before entry each with distinct technical and commercial implications. While National Gas has assessed both models for the transmission network a gap analysis revealed that these findings are not directly transferable to the distribution network.
Evidence for pre-blending was previously completed as part of HyDeploy and the Hydrogen Blending Functional Specification project. It was shown that this approach provides more controlled mixing but may require more complex infrastructure leading to higher costs for the producer. Although it is assumed Direct Injection may be achievable at lower cost there are multiple key technical challenges associated with the technique such as the potential for inadequate hydrogen mixing which could result in non-compliant gas safety concerns including material integrity and operational constraints e.g. GSMR exclusion zones.
Through literature review CFD modelling engineering assessments and commercial analysis the study will evaluate the technical and safety performance risks and cost implications of direct injection across a range of scenarios and configurations.
The Role of Gas Distribution Networks in Power Generation
This project will assess the current and future role of gas distribution networks (GDNs) in supporting dispatchable electricity generation within a decarbonising UK energy system. It will identify method(s) for GDN operators to obtain accurate gas usage data from existing generation connections and develop future scenarios to inform network planning and investment.