Future Energy Networks
51 - 100 of 148 results
-
-
Futures Close Heat Programme (FC Heat)
More LessTo reach our national net zero targets by 2050, we need to decarbonise approximately 25 million homes in England. Domestic heating accounts for approximately 14% of the UKs entire emissions and significant investment is required to improve the energy efficiency of our housing stock. In addition, there are major challenges associated with domestic decarbonisation:
- England has the most diverse housing stock in the UK. with 35% built before the end of WWII.
- Sixty-four percent are owner-occupied, and these homeowners need to have a good, cost effective and efficient experience of home and heating upgrade as we move towards zero carbon homes.
- Implementing heating upgrades to this ageing housing stock requires a ‘whole house’ approach therefore, consideration must be given to the building fabric and heating system.
Retrofitting existing homes with electric heating systems or deployment of green hydrogen boilers offer potential solutions however, the intricacies of deployment and installation are complex, further research and development is required to learn more about installation, performance of various heating options. Doing so will inform future domestic decarbonisation strategies.
-
-
-
GDN Gas Quality Forecasting
More LessThis project aims to develop a means of forecasting gas quality at the NTS offtakes, which will support current arrangements for target Calorific Value (CV) setting, allowing networks to more accurately provide target CVs to biomethane producers and reducing sudden changes in targets sent to biomethane sites which can cause operational problems. Going forward gas quality information on CV and potentially Wobbe will also assist the GDNs in managing hydrogen blend.
-
-
-
GGT- Novel Green Gases
More LessNovel green molecules have the potential to make a significant contribution to the decarbonisation of the UK’s gas network, while also reducing system costs. Synthetic and e-methane can play a significant role in meeting future industrial demand as well as decarbonising the power, transport and domestic heat sectors. This project investigates novel green gases in more depth to understand how they can be implemented effectively and quickly deployed to decarbonise the gas sector in the UK.
-
-
-
Gas Inhibitors for Hydrogen Pipelines - Phase 3
More LessThe Phase 3 project on gas inhibitors for hydrogen pipelines aims to translate lab-scale findings into practical applications for the UK’s National Transmission System. It focuses on validating the effectiveness of oxygen and alternative inhibitors in mitigating hydrogen embrittlement, addressing unresolved safety and integrity concerns from previous phases, and designing a plan for safe integration into existing infrastructure. The project includes physical demonstration planning, and network design to assess technology implementation.
-
-
-
Gas Networks Evolution Simulator
More LessThe Gas Network Evolution Simulator (GNES) is an innovative project aimed at optimising the transition away from natural gas by using advanced Agent Based Modelling (ABM). GNES simulates the complex interactions between stakeholders such as Gas Distribution Networks (GDNs), Electricity Networks, consumers, and policymakers. It analyses economic, social, and environmental impacts of gas network decommissioning and explores new infrastructure opportunities. By identifying challenges and benefits, GNES supports the development of cost-effective, equitable solutions that support vulnerable populations, ensuring a smooth transition to low-carbon energy sources while minimising consumer disruption and maximising network efficiency.
-
-
-
Gas Transmission Data Sharing Infrastructure
More LessThis project will entail a feasibility study to assess the viability of developing a secure, scalable, and interoperable data sharing infrastructure for National Gas Transmission (NGT), supporting regulatory compliance, stakeholder access, and alignment with NESO’s DSI initiative. The main objective is to gain a better understanding of how we share data currently and how this will change moving forward both within established participants and enabling new participants and stakeholders to benefit from National Gas’s data. This will support the wider NESO led DSI initiative. Using two NGT data systems as a use case for this study
-
-
-
Gas transmission asset resilience through network transitions Discovery
More LessAs the energy system transitions away from unabated natural gas and parts of the gas network are either decommissioned or repurposed to support the UK’s net zero goals, there is an increased risk of unintentional third-party damage to the network. Any supply interruptions to the transmission network would directly impact security of supply across the country and have a significant cost to customers including power generators, industry and domestic users. This project will investigate the benefits of moving from expensive, low frequency, manual network inspections to innovative AI assisted surveillance technologies in combination with satellite imagery and drones.
-
-
-
Girth Weld Inspection of Steel Pipelines for Repurposing to Hydrogen Service
More LessRepurposing of natural gas pipelines made of carbon steel for use with hydrogen blends requires a fitness-for-service analysis as part of the hydrogen use safety case. Girth welds of an unknown quality exist in the Local Transmission System (LTS). In hydrogen service these welds would have a greater susceptibility to fracture failure due to material embrittlement caused by interaction of steel material with hydrogen.
Current in-line inspection methods do not routinely inspect girth welds for defects. This project aims to test the available technology for its capability to detect defects and cracks in girth welds. This will provide valuable data for engineering critical assessments required to repurpose natural gas pipelines. It will also inform about the state of art inspection techniques and whether they can be used as a tool for repurposing pipelines.
-
-
-
Green Gas Access
More LessGreen Gas Access will define tools to improve how green gas is managed across UK distribution networks, supporting net-zero goals. With fossil fuels still expected to dominate the energy mix by 2050, we must ensure resilient supply and avoid capacity loss as we integrate decentralised sources like biomethane. The solution is to enable real-time network operation, including dynamic supply modelling, scenario planning, and technology deployment. Key outcomes include: improved green gas injection control, better asset use, onboarding new suppliers efficiently, and supporting the transition to low-carbon systems through coordinated green gas, storage, and power-to-gas operation.
-
-
-
H100 Barhole Trials for Hydrogen Network Operations
More LessThis project will focus on barholing operations conducted after an emergency gas escape within the H100 Fife Distribution Network Operations. The scope will consider H100 scenarios, specifically the establishment of a new distribution network to deliver Hydrogen to selected properties in the conversion area. The minimum pressure for the H100 Fife Distribution network is 27 mbar, and the maximum pressure is 75 mbar. The aim of this project is to provide further evidence to support SGN operations on the H100 distribution network during emergencies and any future trials or broader rollouts of Hydrogen.
Steer Energy has been identified as a suitable contractor for executing this project due to their extensive expertise in this field and their previous work on the Barhole Trials and ITL Haldane Drill Isolator project. Steer has a proven partnership with SGN and the wider gas industry, offering a variety of services, including experimental lab testing, training, and testing facilities.
-
-
-
H2 Housing Design
More LessThis project will explore ventilation and explosion relief requirements for housing currently used on the gas network for pressure regulating installations (PRIs). Housings currently provide security from a range of factors from weather to vandalism, while also providing the necessary relief requirements in the event of an emergency. The understanding of these requirements for Natural Gas has been developed, however, work conducted in the IGEM TD/13 hydrogen supplement did not fully address whether these design specifications are suitable for use with Hydrogen. This multi-stage project will first explore the design specifications listed in industry standards (IGEM/TD/13, GIS/PRS/35, SGN/SP/CE/10, etc) and understand which of these may be appropriate and which may require redesign. The latter stage of this project will take the design specifications deemed to be unsuitable for use with hydrogen and conduct testing to develop revised design specifications which would provide the necessary relief requirements.
-
-
-
H2 Rail
More LessThis project will explore the feasibility of integrating hydrogen train refuelling infrastructure to support the development of a hydrogen rail network. This has particular relevance to our network as some of the UK’s hardest to electrify rail routes are situated in Wales and South West England. The project will focus on these hard to electrify routes, exploring H2’s potential role in enabling their decarbonisation. If successful, this project can help the WWU network to become a proving ground for real-world delivery of impactful H2 rail technology. It is expected to provide information which can be used in planning strategic hydrogen pipeline routes and network repurposing plans, and support regional energy planning.
-
-
-
H2 Site Safety Systems
More LessThis project will examine the suitability of existing Fire and Gas (F&G) detection and suppression systems for use with hydrogen blends of up to 20%. These systems comprise: fire detection, fire suppression, gas detection, and associated control systems. They are found in compressor cabs and at network terminals.
Through CFD modelling three representative F&G systems will be individually assessed for compatibility with blends, and will then be used as examples to make comments on the suitability of other F&G systems on the network. Where assets or control systems are not suitable, this project will not design a new system, but recommend where changes should be made and demonstrate how those changes safely manage risk – including cost estimation for upgrade or retrofit.
-
-
-
High Pressure Venting and Flaring Demonstration for Net-Zero Gases Transportation
More LessNational Gas Transmission (NGT) own and operate the UK’s National Transmission System (NTS), transporting natural gas from terminals to end users. NGT have ambitions to repurpose the existing to transport hydrogen and hydrogen blends. Understanding the impact of hydrogen on our existing assets is a key enabler for this.
This project will conduct design of flare for hydrogen and its blends and vent system for hydrogen, its blends and carbon dioxide and offline physical testing to provide evidence that hydrogen / hydrogen blends could be flared and vented safely and environmentally in for NTS.
-
-
-
High-Pressure Materials Analysis (HPMA)
More LessThis project will identify and evaluate current technology available for pipes suitable for use in natural gas, blended gas, and hydrogen gas networks operating above 7 bar.
This project will see QEM Solutions conduct a comprehensive literature review of market reports on pipes used in high-pressure gas systems, as well as of existing options for transportation of high-pressure gas in industrial uses with transferrable learnings. QEMS will develop a matrix comparing pros and cons of each solution and consolidate the findings into a final project report.
The project will facilitate the energy system transition by investigating the available and most optimal pipeline materials for natural gas, blended gas, and hydrogen gas networks above 7 bar, considering all operational, capex requirements, and full lifecycle costs. This work is important for informing investment decisions in pipeline replacement materials, addressing a gap in current knowledge.
-
-
-
Human Behaviours and automation
More LessThis project will produce valuable insights into understanding the relationship between human behaviours and the utilisation of safety devices with automated functionality. This follows the work done on hydrogen risk mitigations which included technology such as hydrogen detectors with automated functionality to remotely notify the emergency call centre to dispatch an engineer to the detected leak. In their review of this work, HSE have asked if the assumption that consumers will continue to act the same, knowing the device will be doing some automated, will change the validity of the modelling assumptions. This project will address that query and build on our own understanding of consumer insights; something which could add a depth of value to other projects exploring automated safety systems.
-
-
-
HyBlend II
More LessThis project assembles a multi-laboratory team to address high-priority research topics identified by industry related to the blending of hydrogen into the U.S. natural gas pipeline network. PRCI has been contracted by DOE to provide contract and invoicing support which allows additional members to join after project start.
There were four main activities being performed in Phase 1 of the CRADA project that fell under two categories: materials research and analysis. Sandia National Laboratories (SNL) led the materials research on metals, which is primarily used for natural gas transmission, while Pacific Northwest National Laboratory (PNNL) headed the research on polymeric materials, which comprise the natural gas distribution network. Argonne National Laboratory (ANL) was responsible for life-cycle analysis while the National Renewable Energy Laboratory (NREL) performed techno-economic analysis on hydrogen blending scenarios, the work on these subjects will be extended in Phase 2.
-
-
-
HyNTS Corrosion
More LessThe National Transmission System (NTS) pipelines employ a number of external corrosion barrier coatings, primarily coal tar enamel and fusion bonded epoxy (FBE). Cathodic protection is deployed on the network to mitigate for coating failure. Additionally, there are a range of pipeline steels that are used in both above ground buried pipework, both stainless and carbon steels of various grades.
Following the previous NIA project: Research the Impact of Hydrogen on CP & Degradation of Coatings (NIA NGGT0191), the HSE have recommended follow-on testing to fully explore the impact of hydrogen permeation through steel pipelines on corrosion protection systems.
Additionally, the impact of hydrogen on all credible pipeline corrosion mechanisms is to be considered to understand whether current assumptions with regards corrosion rates are valid for hydrogen pipelines.
-
-
-
HyNTS Operational Methodologies - Valve Performance Assessments
More LessThis project aims to assess and enhance the hydrogen readiness of ball valves within the (NTS) by conducting maintenance strategy evaluation with material performance analysis. It involves reviewing current valve operations, diagnostics, and OEM maintenance guidance, alongside a literature review of commonly used valve materials to understand their behaviour under hydrogen exposure. The project valve performance testing and finite element analysis of existing valve designs to evaluate structural integrity. Findings from these activities will provide actionable recommendations for updating NGT’s valves maintenance strategies, diagnostic tools, and design standards to support safe and efficient hydrogen service deployment
-
-
-
HyNTS Operational: Qualification of Pressure Vessels
More LessThe National Transmission System (NTS) uses dry scrubbers, filters and strainers to remove contaminants in the gas stream. Introducing hydrogen raises new challenges due to its distinct properties, which could affect the performance and efficiency of these existing cleaning assets. We completed a project that investigated the compatibility of these assets with hydrogen and hydrogen blends to ensure gas quality without compromising the safety or efficiency. An outcome was to get a deeper understanding of the fracture and fatigue behaviours of these equipment to better understand whether hydrogen will impact the material properties. This assessment will undertake a targeted CTR analysis to inform a future potential physical test programme.
-
-
-
HyProximity
More LessThis project aims to develop a robust, evidence-based framework to support the introduction of standardised separation distance tables for 100% hydrogen, similar in format and function to those in IGEM/TD/3 for natural gas and hydrogen blends. This will address a gap in current standards for hydrogen. The Institute of Gas Engineers and Managers (IGEM) are providing resource to support the project, and to update any necessary standards.
-
-
-
Hybrid Heat Systems (HHS) Acceleration Route
More LessProject will deliver strategic analysis and recommendations to support the accelerated adoption of Hybrid Heat Systems (HHS) in GB. This includes assessing technology options, commercial models, stakeholder perspectives, and system integration pathways. The work will result in actionable insights, clear positioning of HHS within the wider decarbonisation strategy.
-
-
-
Hybrid Heating | Project 10
More LessThe Cadent Hybrid Heating & Services Beyond the Meter (SBtM) project is a collaborative initiative between Cadent Gas and Guidehouse Europe, aiming to trial a more integrated approach to delivering hybrid heating systems for vulnerable and fuel-poor households. The project seeks to bring together current approaches via schemes—such as Cadent’s own Services Beyond the Meter (SBtM) programme, the Energy Company Obligation (ECO), and the Social Housing Decarbonisation Fund (SHDF)—into a single, customer-focused pathway that combines appliance upgrades, insulation, heating system installations, and tailored advice. Through a phased residential trial, the project will coordinate the installation of hybrid heating technologies, monitor impacts on customer bills and emissions, and gather feedback from both consumers and industry stakeholders. The ultimate goal is to demonstrate the benefits of a joined-up approach to decarbonising home heating, inform national policy, and support Cadent’s role in achieving low-carbon heating targets, while ensuring robust governance, risk management, and stakeholder engagement throughout the process.
-
-
-
Hydrogen & Carbon Dryness Management
More LessThis Network Innovation Allowance (NIA) project investigated dew point management in hydrogen/natural gas blends, pure hydrogen and carbon dioxide transmission pipelines. In the National Transmission System (NTS), which is currently a natural gas network, the purity of the gas is carefully controlled via the network entry specification. Trace components, such as water, nitrogen oxides, sulphur containing compounds, oxygen and carbon dioxide have strict limits on their allowable levels in the network. This is done in part to ensure the gas delivered to end users meets the requirements of the customer, but also to protect transport and storage systems. Purity specifications are being developed for hydrogen, its blends with natural gas, and for carbon dioxide (CO2). This project focused specifically on the water content within these gases, in what concentrations it is likely to be acceptable, the conditions at which it may condense in the network, its interactions with other trace components and contaminants and the potential detrimental effect on the network.
Limiting moisture content and ensuring gas dryness is important for several reasons:
- Safety & Efficiency: Hydrogen’s efficiency as a fuel can be compromised by moisture. Water in hydrogen can affect the combustion process, leading to a reduced efficiency for applications like gas turbines.
- Corrosion: If dew points aren’t controlled effectively, liquid can drop out of the gas phase, and this moisture can cause corrosion in pipelines and hydrogen embrittlement. For CO2 pipelines this moisture can react to produce carbonic acid which can further corrode the pipelines.
The outcomes of the project should provide a clearer insight and strategy on how to effectively manage hydrogen and carbon dryness within the NTS, ensuring that the gas remains within the required specifications for current and future demands.
The project was split into three work packages (WP):
WP1 focused on hydrogen and its blends, initially reviewing the equations of state (EoS) that model the dew point temperature at varying water content and hydrogen/methane blend ratios. The impact on the network of liquid water formation in hydrogen was examined, including the interaction with other trace components such as CO2 and H2S, in particular the effect on welds and pipeline defects. Finally, a summary of international standards for hydrogen purity highlighted the likely water content limits that could be expected by hydrogen users and thus provided by producers.
WP2 focused on CO2, its phase behaviour and the effect impurities have on this behaviour using the most appropriate equations of state. The detrimental effect of CO2 and liquid water contained within it on pipelines, fittings and other parts of the network was reviewed.
WP3 focused on how the water content specifications could be managed on the network, from the point of view of monitoring and controlling water dew point in the gases. The water content expected from various production techniques were reviewed and a high-level costing for the dehydration process for both CO2 and hydrogen was made.
-
-
-
Hydrogen AGI Pipework Integrity Monitoring Phase 2
More LessThis project proposes a structured approach to assess the integrity of AGI pipework for hydrogen service. It includes development of a screening tool based on representative AGI archetypes, execution of ECAs to define flaw tolerances and inspection intervals, and evaluation of NDT capabilities with respect to desired AGI performances. The project also reviews integrity management software to support increased digitalisation and monitors emerging technologies for hydrogen-related NDT developments.
-
-
-
Hydrogen Blending: Direct Injection Feasibility Study
More LessThis project has been initiated to assess the technical and commercial feasibility of direct hydrogen injection into the gas distribution network at 5% and 20% by volume. It supports the broader Market Frameworks appraisal by providing the evidence needed to evaluate whether both System Entry Models, direct injection and pre-blending are feasible under varying network conditions.
The need for this study was identified through the Hydrogen Blending Implementation Plan, which outlined two technical approaches for hydrogen connections: injecting hydrogen directly into the network or pre-blending it before entry, each with distinct technical and commercial implications. While National Gas has assessed both models for the transmission network, a gap analysis revealed that these findings are not directly transferable to the distribution network.
Evidence for pre-blending was previously completed as part of HyDeploy and the Hydrogen Blending Functional Specification project. It was shown that this approach provides more controlled mixing but may require more complex infrastructure, leading to higher costs for the producer. Although it is assumed Direct Injection may be achievable at lower cost, there are multiple key technical challenges associated with the technique such as the potential for inadequate hydrogen mixing, which could result in non-compliant gas, safety concerns including material integrity and operational constraints e.g. GSMR exclusion zones.
Through literature review, CFD modelling, engineering assessments, and commercial analysis, the study will evaluate the technical and safety, performance, risks, and cost implications of direct injection across a range of scenarios and configurations.
-
-
-
Hydrogen Combustion Engine Feasibility Study
More LessThis project will see Cenex deliver a feasibility study on hydrogen internal combustion engines (H2ICE) as an alternative to diesel and Fuel Cell Electric Vehicle (FCEV) within WWU’s operational fleet. This project comprises three distinct work packages (WPs), each feeding into a holistic assessment of H2ICE applicability across WWU’s vehicle assets. Cenex will apply its expertise in fleet decarbonisation, alternative fuel technologies, legislative policy analysis, and techno-economic modelling to meet WWU’s scope requirements. All outputs will be suitable for internal strategic review and for sharing externally with partners and stakeholders.
-
-
-
Hydrogen Environment Testing of Girth Welds Phase 2 - Constant Load Testing
More LessPrevious testing carried out under NIA has outstanding gaps that require further testing to close. Completing the additional testing will confirm actual fracture toughness values to be used and the corresponding J value from the crack growth resistance curve. The project outputs are required and will be used to progress design, specification and procurement processes for hydrogen major projects. The results can also be applied for repurposing assessments.
-
-
-
Hydrogen Fracture Surfaces Assessment
More LessThe LTS Futures project aims to understand how the local transmission system (LTS) could be repurposed from Natural Gas to hydrogen. The project encompasses several elements which will feed into a blueprint methodology for repurposing the LTS to hydrogen. During one of the work elements, LTS Futures conducted full-scale testing of pipeline defects and small-bore connections exposed to hydrogen. Testing was conducted until failure to provide information for hydrogen pipeline design, standards, and operational procedures. This project will undertake further detailed analysis of the fracture surfaces to provide a visual confirmation of hydrogen diffusion into the pipeline microstructure and if this contributed to failure.
-
-
-
Hydrogen Fuel Cell Operating Hub for Repex/Large-Scale Projects
More LessTo maintain their above ground and underground pipework assets, all Gas Distribution Networks (GDN) operate substantial fleets of commercial vehicles (primarily vans, but also HGVs), together with mobile plant and powered equipment. Presently, there is a complete reliance on hydrocarbon fuels, primarily diesel and petrol. Both fuel types are usually sourced via the public retail forecourt network. Similar issues exist for other utility providers that operate underground and overground infrastructure.
Wales & West Utilities is undertaking a major programme of change to support decarbonisation and deliver a hydrogen-ready, Net Zero gas network. Our distribution network iron mains replacement programme (Repex) requires significant excavation and pipe replacement activity, laying long-life, hydrogen-ready polyethylene pipe by a variety of means.
The project endeavours to identify a suite of suitable zero-emission mobile plant assets, tools and equipment for carrying out Repex work that WWU could hire or purchase for operational trials, and to identify opportunities for changing equipment items to simplify recharging/refuelling requirements in the future.
The objectives of this project are:
- To analyse current energy demands, sound pressure and vibration levels associated with existing ICE powered mobile plant assets, ICE-powered tools and equipment and electrical equipment used for carrying out planned iron mains replacement work on the gas distribution network.
- To estimate the future electrical energy demands (and sound pressure and vibration levels) placed by future zero-emission powered tools and equipment on a zero-emission site-based power generation facility.
- To identify opportunities for changing equipment items to simplify recharging/refuelling requirements in future.
- To identify a suite of suitable zero-emission mobile plant assets, tools and equipment that WWU could hire (or purchase) and utilise for operational trials, short and longer term. This will include the energy source and the means of recharging and/or refuelling on site and/or at regional depot locations.
-
-
-
Hydrogen Ignition Risk from Static & Autoignition – Stage 2B
More LessThe key subject of HIRSA stage 2 projects is to understand if using hydrogen in the gas network will result in an increased likelihood of ignition from static discharge generated by particulates in flowing gas. Building on stage 2A, stage 2B will provide further experimental testing aimed at determining the absolute difference in electrostatic charge generated, identify whether any external factors impact one gas more than the other, and to control the factors affecting generation of the charge. The outputs of this work should provide the industry with a better understanding of the potential change in ignition risk when switching from Natural Gas to hydrogen and will also highlight relevant mitigations to manage this risk.
-
-
-
Hydrogen Ignition Risk from Static and Autoignition (HIRSA) – Stage 3
More LessThe HIRSA programme is assessing ignition risks for the transition to hydrogen, with Stage 3 focusing on high pressure static risks including shockwave ignition and rapid adiabatic compression. This research supports the safe integration of hydrogen into gas networks.
-
-
-
Hydrogen Impact on NTS Welds
More LessLaboratory and full-scale testing have demonstrated that hydrogen gas affects the fracture performance of pipeline steel welds. To avoid severe knockdown factors stipulated by existing hydrogen pipeline codes, mechanical property data from welds tested in high-pressure gaseous hydrogen is required to enable optimised operation of the NTS in hydrogen.
National Gas Transmission have conducted a series of fracture toughness and fatigue crack growth rate tests on a wide selection of pipeline steels and welds representative of those used on the National Transmission System (NTS). A thorough review of the welds tested and how these compare to the wider population of welds in service on the NTS is required to provide further confidence to use this data in pipeline repurposing assessments and for new build design.
-
-
-
Hydrogen Permeation through the Oxide Layer - Phase 2
More LessThis project aims to address major gaps identified in NIA2_SGN0078, which conducted a thorough literature review of the international scientific and industry knowledge base. The work will focus on characterising the hydrogen permeability rate of API Grades X52 and X60 vintage pipelines and welds by analysing the microstructure of each sample, investigating the impact of internal corrosion layers, and conducting mechanical testing post-exposure.
A correlation exercise will also be conducted to equate gaseous charging with electrochemical charging. The outcome of this work targets an improved industry best-practice for permeation and fracture toughness tests, providing a validated benchmark framework with the potential to inform future updates of industry standards and procedures, and saving costs on any future material and permeation testing work.
-
-
-
Hydrogen Permeation through the Oxide Layer Phase 1
More LessThis project is looking to address uncertainties surrounding LTS pipeline materials by investigating the effect of the oxide layer on hydrogen permeation rate for steel pipelines. This project will also investigate the formation of an oxide layer inside the pipe at different temperatures, as well as how the microstructure of the pipeline steel and condition of the oxide layer affect permeation for different grades of steel. It is critical this relation is better understood as these uncertainties are currently hindering our ability to fully and accurately assess the repurposing of the LTS. The outcomes of this project have the potential to increase cost-savings and improve confidence in the existing network to carry hydrogen, including blends.
-
-
-
Hydrogen Refuelling from the Network
More LessWales & West Utilities (WWU) is undertaking a project to develop a thorough understanding of the technical and economic requirements for integrating hydrogen refuelling stations (HRS) into the existing gas network. The main aim is to enable the supply of ‘on-spec’ hydrogen for fuel cell electric vehicles (FCEVs) and hydrogen internal combustion engines (HICEs) from the heat-grade hydrogen currently delivered by the network. This involves analysing the types of contaminants present in grid hydrogen, pinpointing the purification technologies needed, and assessing the infrastructure requirements for compression, chilling, and storage to deliver hydrogen at the target pressures of 350 and 700 bar.
-
-
-
Hydrogen Rollout Assessment
More LessThis project will help WWU to understand considerations for 100% Hydrogen Rollout at a town scale, to inform future activity on preparation for repurposing. Areas will be chosen which are representative of different networks, housing stock and demographics, which will require different approaches and engagement.
-
-
-
Hydrogen backbone social economic assessment
More LessDevelop credible and independently modelled pathways, to test the economic case of developing a H2 Backbone and prepare NGT for dialogue with NESO, DESNZ, HMT and a wider group of stakeholders.
-
-
-
Hydrogen device trials
More LessIn order to support UK ambitions for hydrogen blending and the development of a hydrogen economy, National Gas will need to install new gas chromatographs with the capability to measure hydrogen up to 20% in a natural gas blend. At present hydrogen is not measured anywhere on the National Transmission System (NTS), and therefore there are no proven in-use devices, and limited experience within the company to allow effective decision making in deploying these assets in the move towards net zero.
In order to make informed decisions ahead of chromatograph fleet upgrade, and to allow for a wide selection of reliable device choices when it comes to that upgrade, National Gas require the testing of available devices to analyse their performance, and thus suitability for NTS installation. This project will employ a trusted testing house to obtain (through loaning) blend-ready chromatographs from suppliers, and then to rigorously examine the performance of those devices. These devices could be tested at the testing house’s site, or at the instrument vendor’s site.
-
-
-
IGEM TD1 / TD13 Hydrogen Supplements Review
More LessIGEM have received requests from operators to update the hydrogen TD1 / TD13 supplements to take account of outputs from research projects. The project will review and assess the updates required based on findings from completed hydrogen research projects. This will support the repurposing of existing pipelines and installations from Natural Gas to hydrogen and Natural Gas/hydrogen blends, with input and support from users/stakeholders and formal approval by IGEM.
The project will also develop a methodology for fracture and fatigue assessments for existing Natural Gas pipelines to be repurposed to hydrogen service. This methodology will assess the impact of blends of hydrogen up to and including 100% hydrogen to determine whether pipeline derating and/or deblending is required. The requirements for the application of this specification should be included in the updates to the IGEM/TD/1 and IGEM/TD/13 hydrogen supplements.
-
-
-
INNOVATIVE MONITORING AND CONTROL OF PIPELINE CONSTRUCTION
More LessCadent proposes to trial “Digital Inspector” (DI), an innovative platform that enhances real-time control, inspection, and recording of pipeline construction activities. Digital Inspector provides verifiable evidence of weld quality, supervises critical parameters live during construction, and generates a complete digital record for asset integrity.
This project will trial Digital Inspector across multiple Cadent construction projects in 2025/26, working closely with Cadent’s contractors, to assess practical usability, contractor acceptance, and the impact on existing BAU processes.
-
-
-
Impact of Hydrogen and on NTS Oils & Greases – Phase 2
More LessPhase 1 of the project compiled a list of oils and greases considered to be gas-facing on the NTS, along with identifying functional and material property requirements of these products. Proposed standards and testing methodologies were also outlined to inform the next phase of the project. In Phase 2, the project will proceed with additional required activities to ensure the safe utilisation of NTS oils/greases in a hydrogen pressurised environment. These activities include laboratory testing for lubricants and functional testing for sealants to assess degradation and performance of these products in hydrogen. Subsequently, requirements for in-service monitoring will be identified.
-
-
-
Innovative approach to Policy document management
More LessAs part of National Gas’s Three Molecule strategy, the technical evidence for the transportation of hydrogen and carbon dioxide through the National Transmission system is being gathered through the HyNTS and CO2 programmes. This technical evidence will feed into the updates of NGT’s suite of policies and procedures which are used to demonstrate compliance with the Gas Safety (Management) Regulations (GSMR), Pipeline Safety Regulations (PSR) and Pressure System Safety Regulations (PSSR).
This project will develop the approaches to compliance with regulations for hydrogen, hydrogen blends and CO2, considering both new build and repurposed assets. The project will also define how the NTS Safety Case of the future will look, including modular design and digitalisation to streamline access to information.
-
-
-
Integrity Management of Gaseous Carbon Dioxide Pipelines
More LessExisting defect assessments and repair methodologies are aligned with the P/11, P/20 and PM/DAM1 management procedures and are adopted to inspect, assess and repair the pipelines for defects and take suitable measures to reduce them. However, the scope and applicability of these assessment and repair methodologies in the presence of gaseous phase carbon dioxide remain uncertain. The key challenges which the project aims to address are:
- Will existing repair techniques such as epoxy shell, welded shells, composite wraps, gouge dressing etc. be suitable for transmission of gaseous phase carbon dioxide?
- What are the different defects we may encounter or consider hazardous in the presence of carbon dioxide? What are the impacts of carbon dioxide on each defect type? And how much does water/corrosion exacerbate this?
- Have the mechanisms of failure for each defect type changed after introducing carbon dioxide?
- Can we implement the assessment and repair methodologies safely? Are the techniques safe and suitable for the pipeline operations and maintenance teams?
The project seeks to answer the above in addition to understanding the types and extent of repairs across the NTS and review the impact of carbon dioxide on the effectiveness of these inspection, assessment and mitigation technologies.
-
-
-
Integrity Management of Hydrogen Pipelines
More LessExisting defect assessments and repair methodologies are aligned with the T/PM/P/11 and T/PM/P/20 management procedures and are adopted to inspect, assess and repair the pipelines for defects and take suitable measures to reduce them. However, the scope and applicability of the repair techniques in the presence of high-pressure hydrogen remain uncertain. The key questions which form an outline of the project are:
- What are the different types of defects, we may encounter or consider injurious in the presence of hydrogen?
- What is the impact of hydrogen on each defect type? Have the mechanisms of failure changed for each defect type after hydrogen-natural gas blending?
- Will the existing repair techniques be applicable under transmission of high-pressure hydrogen and hydrogen-natural gas blends?
- Can we implement the defect assessment, inspection and repair methodologies safely? Are the techniques safe and suitable for the pipeline operations and maintenance teams?
The project seeks to answer the above in addition to understanding the types and extent of repairs across the NTS and assess the impact of hydrogen on the effectiveness of these inspection, assessment and mitigation technologies.
-
-
-
LISTEN – Local Insights Supporting Transparent Energy Networks
More LessThe LISTEN (Local Insights Supporting Transparent Energy Networks) project aims to create a scalable, data-led approach to understanding and building social consent for the energy transition. LISTEN integrates AI-driven tools, place-based engagement, and co-designed dashboards to help energy networks plan with communities, not just for them.
The platform brings together four core elements:
- Regional Dashboards: Visualising insights by geography, topic, and demographics to inform planning and engagement strategies.
- Multi-Source Data Capture: Synthesising local news, social media, planning documents, and community events for a holistic view of local feeling.
- Voice-Enabled Surveys: Capturing authentic community sentiment in people’s own words, with AI sentiment analysis assessing tone, confidence, and emotion.
- Tailored Recommendations: Providing SGN and partners with actionable insights and engagement strategies aligned with Ofgem’s fairness and consumer-centric priorities.
-
-
-
Lotus Notes Logbook Upgrade
More LessNGN currently operate a Lotus Notes application with a bespoke electronic Logbook system to capture all of the activity with day and planned ahead that occurs within our gas control centre. This system has been in operation since 1997 and has proven to be a highly reliable and flexible tool to manage planned works, faults, general site activity and wider issues.
The current technology is outdated and contains years’ worth of data causing it to be slow. There are no links between Lotus notes and other vital control room applications (SCADA etc.). Raising faults becomes a tedious task and the Logbook and other in-apps are not user friendly. There are no updates available to improve the existing system.
The current system needs to be replaced but to achieve that we need a full exploration of where technology can deliver to our requirements, and to fully explore the impact of net zero and what new functionality may be required to manage the transition to net zero.
This is an early stage feasibility project to understand all of the challenges, opportunities and risks that UK GDNs face with their systems, in order to help facilitate the transition to net zero energy systems.
-
-
-
Low Carbon Conversion of Non Domestic Properties Utilising Distributed Natural Gas
More LessThis project investigates the technical and economic feasibility of converting non-domestic buildings from natural gas to low carbon energy sources, specifically hydrogen and electricity. It aims to address the significant evidence gap around the conversion of commercial and institutional buildings that are currently supplied by the GB gas distribution networks. The study will assess a wide range of building archetypes, including care homes, schools, hospitality venues, and light industrial sites, using a combination of literature review, site surveys, detailed system designs, and technoeconomic modelling. The outputs will inform future energy policy, support infrastructure planning, and help ensure safe and cost-effective deployment of low carbon technologies in non-domestic settings.
-
-
-
MASiP Phase 3 (Qualification Testing & Integrated System Development)
More LessThe MASiP Phase 3 project aims to develop, test, and qualify a new pipeline system (MASiP) as a safe and cost-effective alternative to traditional steel pipelines for pipelines operating above 7 bar, capable of transporting natural gas, biogas, and up to 100% hydrogen. Building on Phases 1 and 2, this phase focuses on the technical assessment of tight radius bends, tees, and damage repair, as well as the integration of live monitoring systems in a prototype operational environment. Comprehensive validation will include connectors, coatings, repair systems, hot-tapping solutions, ground movement tolerance, durability, and design life testing. All testing will be carried out in accordance with IGEM, API, and ASME standards, supported by statistical and independently witnessed trials to generate robust qualification data for industry adoption. The key deliverable is a validated, deployable hydrogen-ready pipeline system that is safe, compliant, and cost-effective, offering potential cost savings of up to 50% compared with steel. The project outcomes will support the UK’s RIIO-GD2 strategy and 2050 net-zero targets by enabling hydrogen-ready infrastructure, improving monitoring, installation efficiency, and long-term reliability, while also providing the evidence base required for regulatory, policy, and industry acceptance of alternative pipeline materials.
-
-
-
Maximising Capacity at Biomethane Sites
More LessThis project will develop network and/or entry site solutions that will enable biomethane supply to meet the swings in demand through the year.
-
