Future Energy Networks
51 - 100 of 100 results
-
-
HyBlend II
This project assembles a multi-laboratory team to address high-priority research topics identified by industry related to the blending of hydrogen into the U.S. natural gas pipeline network. PRCI has been contracted by DOE to provide contract and invoicing support which allows additional members to join after project start.
There were four main activities being performed in Phase 1 of the CRADA project that fell under two categories: materials research and analysis. Sandia National Laboratories (SNL) led the materials research on metals, which is primarily used for natural gas transmission, while Pacific Northwest National Laboratory (PNNL) headed the research on polymeric materials, which comprise the natural gas distribution network. Argonne National Laboratory (ANL) was responsible for life-cycle analysis while the National Renewable Energy Laboratory (NREL) performed techno-economic analysis on hydrogen blending scenarios, the work on these subjects will be extended in Phase 2.
-
-
-
Hybrid Heat Systems (HHS) Acceleration Route
Project will deliver strategic analysis and recommendations to support the accelerated adoption of Hybrid Heat Systems (HHS) in GB. This includes assessing technology options, commercial models, stakeholder perspectives, and system integration pathways. The work will result in actionable insights, clear positioning of HHS within the wider decarbonisation strategy.
-
-
-
Hydrogen & Carbon Dryness Management
This Network Innovation Allowance (NIA) project investigated dew point management in hydrogen/natural gas blends, pure hydrogen and carbon dioxide transmission pipelines. In the National Transmission System (NTS), which is currently a natural gas network, the purity of the gas is carefully controlled via the network entry specification. Trace components, such as water, nitrogen oxides, sulphur containing compounds, oxygen and carbon dioxide have strict limits on their allowable levels in the network. This is done in part to ensure the gas delivered to end users meets the requirements of the customer, but also to protect transport and storage systems. Purity specifications are being developed for hydrogen, its blends with natural gas, and for carbon dioxide (CO2). This project focused specifically on the water content within these gases, in what concentrations it is likely to be acceptable, the conditions at which it may condense in the network, its interactions with other trace components and contaminants and the potential detrimental effect on the network.
Limiting moisture content and ensuring gas dryness is important for several reasons:
- Safety & Efficiency: Hydrogen’s efficiency as a fuel can be compromised by moisture. Water in hydrogen can affect the combustion process, leading to a reduced efficiency for applications like gas turbines.
- Corrosion: If dew points aren’t controlled effectively, liquid can drop out of the gas phase, and this moisture can cause corrosion in pipelines and hydrogen embrittlement. For CO2 pipelines this moisture can react to produce carbonic acid which can further corrode the pipelines.
The outcomes of the project should provide a clearer insight and strategy on how to effectively manage hydrogen and carbon dryness within the NTS, ensuring that the gas remains within the required specifications for current and future demands.
The project was split into three work packages (WP):
WP1 focused on hydrogen and its blends, initially reviewing the equations of state (EoS) that model the dew point temperature at varying water content and hydrogen/methane blend ratios. The impact on the network of liquid water formation in hydrogen was examined, including the interaction with other trace components such as CO2 and H2S, in particular the effect on welds and pipeline defects. Finally, a summary of international standards for hydrogen purity highlighted the likely water content limits that could be expected by hydrogen users and thus provided by producers.
WP2 focused on CO2, its phase behaviour and the effect impurities have on this behaviour using the most appropriate equations of state. The detrimental effect of CO2 and liquid water contained within it on pipelines, fittings and other parts of the network was reviewed.
WP3 focused on how the water content specifications could be managed on the network, from the point of view of monitoring and controlling water dew point in the gases. The water content expected from various production techniques were reviewed and a high-level costing for the dehydration process for both CO2 and hydrogen was made.
-
-
-
Hydrogen AGI Pipework Integrity Monitoring Phase 2
This project proposes a structured approach to assess the integrity of AGI pipework for hydrogen service. It includes development of a screening tool based on representative AGI archetypes, execution of ECAs to define flaw tolerances and inspection intervals, and evaluation of NDT capabilities with respect to desired AGI performances. The project also reviews integrity management software to support increased digitalisation and monitors emerging technologies for hydrogen-related NDT developments.
-
-
-
Hydrogen Fracture Surfaces Assessment
The LTS Futures project aims to understand how the local transmission system (LTS) could be repurposed from Natural Gas to hydrogen. The project encompasses several elements which will feed into a blueprint methodology for repurposing the LTS to hydrogen. During one of the work elements, LTS Futures conducted full-scale testing of pipeline defects and small-bore connections exposed to hydrogen. Testing was conducted until failure to provide information for hydrogen pipeline design, standards, and operational procedures. This project will undertake further detailed analysis of the fracture surfaces to provide a visual confirmation of hydrogen diffusion into the pipeline microstructure and if this contributed to failure.
-
-
-
Hydrogen Fuel Cell Operating Hub for Repex/Large-Scale Projects
To maintain their above ground and underground pipework assets, all Gas Distribution Networks (GDN) operate substantial fleets of commercial vehicles (primarily vans, but also HGVs), together with mobile plant and powered equipment. Presently, there is a complete reliance on hydrocarbon fuels, primarily diesel and petrol. Both fuel types are usually sourced via the public retail forecourt network. Similar issues exist for other utility providers that operate underground and overground infrastructure.
Wales & West Utilities is undertaking a major programme of change to support decarbonisation and deliver a hydrogen-ready, Net Zero gas network. Our distribution network iron mains replacement programme (Repex) requires significant excavation and pipe replacement activity, laying long-life, hydrogen-ready polyethylene pipe by a variety of means.
The project endeavours to identify a suite of suitable zero-emission mobile plant assets, tools and equipment for carrying out Repex work that WWU could hire or purchase for operational trials, and to identify opportunities for changing equipment items to simplify recharging/refuelling requirements in the future.
The objectives of this project are:
- To analyse current energy demands, sound pressure and vibration levels associated with existing ICE powered mobile plant assets, ICE-powered tools and equipment and electrical equipment used for carrying out planned iron mains replacement work on the gas distribution network.
- To estimate the future electrical energy demands (and sound pressure and vibration levels) placed by future zero-emission powered tools and equipment on a zero-emission site-based power generation facility.
- To identify opportunities for changing equipment items to simplify recharging/refuelling requirements in future.
- To identify a suite of suitable zero-emission mobile plant assets, tools and equipment that WWU could hire (or purchase) and utilise for operational trials, short and longer term. This will include the energy source and the means of recharging and/or refuelling on site and/or at regional depot locations.
-
-
-
Hydrogen Ignition Risk from Static and Autoignition (HIRSA) – Stage 3
The HIRSA programme is assessing ignition risks for the transition to hydrogen, with Stage 3 focusing on high pressure static risks including shockwave ignition and rapid adiabatic compression. This research supports the safe integration of hydrogen into gas networks.
-
-
-
Hydrogen Ignition Risk from Static and Autoignition Stage 2B – Static Generation experimentation
The key subject of HIRSA stage 2 projects is to understand if using hydrogen in the gas network will result in an increased likelihood of ignition from static discharge generated by particulates in flowing gas. Building on stage 2A, stage 2B will provide further experimental testing aimed at determining the absolute difference in electrostatic charge generated, identify whether any external factors impact one gas more than the other, and to control the factors affecting generation of the charge. The outputs of this work should provide the industry with a better understanding of the potential change in ignition risk when switching from Natural Gas to hydrogen and will also highlight relevant mitigations to manage this risk.
-
-
-
Hydrogen Impact on NTS Welds
Laboratory and full-scale testing have demonstrated that hydrogen gas affects the fracture performance of pipeline steel welds. To avoid severe knockdown factors stipulated by existing hydrogen pipeline codes, mechanical property data from welds tested in high-pressure gaseous hydrogen is required to enable optimised operation of the NTS in hydrogen.
National Gas Transmission have conducted a series of fracture toughness and fatigue crack growth rate tests on a wide selection of pipeline steels and welds representative of those used on the National Transmission System (NTS). A thorough review of the welds tested and how these compare to the wider population of welds in service on the NTS is required to provide further confidence to use this data in pipeline repurposing assessments and for new build design.
-
-
-
Hydrogen Permeation through the Oxide Layer Phase 1
This project is looking to address uncertainties surrounding LTS pipeline materials by investigating the effect of the oxide layer on hydrogen permeation rate for steel pipelines. This project will also investigate the formation of an oxide layer inside the pipe at different temperatures, as well as how the microstructure of the pipeline steel and condition of the oxide layer affect permeation for different grades of steel. It is critical this relation is better understood as these uncertainties are currently hindering our ability to fully and accurately assess the repurposing of the LTS. The outcomes of this project have the potential to increase cost-savings and improve confidence in the existing network to carry hydrogen, including blends.
-
-
-
Hydrogen Rollout Assessment
This project will help WWU to understand considerations for 100% Hydrogen Rollout at a town scale, to inform future activity on preparation for repurposing. Areas will be chosen which are representative of different networks, housing stock and demographics, which will require different approaches and engagement.
-
-
-
Hydrogen backbone social economic assessment
Develop credible and independently modelled pathways, to test the economic case of developing a H2 Backbone and prepare NGT for dialogue with NESO, DESNZ, HMT and a wider group of stakeholders.
-
-
-
Hydrogen device trials
In order to support UK ambitions for hydrogen blending and the development of a hydrogen economy, National Gas will need to install new gas chromatographs with the capability to measure hydrogen up to 20% in a natural gas blend. At present hydrogen is not measured anywhere on the National Transmission System (NTS), and therefore there are no proven in-use devices, and limited experience within the company to allow effective decision making in deploying these assets in the move towards net zero.
In order to make informed decisions ahead of chromatograph fleet upgrade, and to allow for a wide selection of reliable device choices when it comes to that upgrade, National Gas require the testing of available devices to analyse their performance, and thus suitability for NTS installation. This project will employ a trusted testing house to obtain (through loaning) blend-ready chromatographs from suppliers, and then to rigorously examine the performance of those devices. These devices could be tested at the testing house’s site, or at the instrument vendor’s site.
-
-
-
Innovative approach to Policy document management
As part of National Gas’s Three Molecule strategy, the technical evidence for the transportation of hydrogen and carbon dioxide through the National Transmission system is being gathered through the HyNTS and CO2 programmes. This technical evidence will feed into the updates of NGT’s suite of policies and procedures which are used to demonstrate compliance with the Gas Safety (Management) Regulations (GSMR), Pipeline Safety Regulations (PSR) and Pressure System Safety Regulations (PSSR).
This project will develop the approaches to compliance with regulations for hydrogen, hydrogen blends and CO2, considering both new build and repurposed assets. The project will also define how the NTS Safety Case of the future will look, including modular design and digitalisation to streamline access to information.
-
-
-
Integrity Management of Gaseous Carbon Dioxide Pipelines
Existing defect assessments and repair methodologies are aligned with the P/11, P/20 and PM/DAM1 management procedures and are adopted to inspect, assess and repair the pipelines for defects and take suitable measures to reduce them. However, the scope and applicability of these assessment and repair methodologies in the presence of gaseous phase carbon dioxide remain uncertain. The key challenges which the project aims to address are:
- Will existing repair techniques such as epoxy shell, welded shells, composite wraps, gouge dressing etc. be suitable for transmission of gaseous phase carbon dioxide?
- What are the different defects we may encounter or consider hazardous in the presence of carbon dioxide? What are the impacts of carbon dioxide on each defect type? And how much does water/corrosion exacerbate this?
- Have the mechanisms of failure for each defect type changed after introducing carbon dioxide?
- Can we implement the assessment and repair methodologies safely? Are the techniques safe and suitable for the pipeline operations and maintenance teams?
The project seeks to answer the above in addition to understanding the types and extent of repairs across the NTS and review the impact of carbon dioxide on the effectiveness of these inspection, assessment and mitigation technologies.
-
-
-
Integrity Management of Hydrogen Pipelines
Existing defect assessments and repair methodologies are aligned with the T/PM/P/11 and T/PM/P/20 management procedures and are adopted to inspect, assess and repair the pipelines for defects and take suitable measures to reduce them. However, the scope and applicability of the repair techniques in the presence of high-pressure hydrogen remain uncertain. The key questions which form an outline of the project are:
- What are the different types of defects, we may encounter or consider injurious in the presence of hydrogen?
- What is the impact of hydrogen on each defect type? Have the mechanisms of failure changed for each defect type after hydrogen-natural gas blending?
- Will the existing repair techniques be applicable under transmission of high-pressure hydrogen and hydrogen-natural gas blends?
- Can we implement the defect assessment, inspection and repair methodologies safely? Are the techniques safe and suitable for the pipeline operations and maintenance teams?
The project seeks to answer the above in addition to understanding the types and extent of repairs across the NTS and assess the impact of hydrogen on the effectiveness of these inspection, assessment and mitigation technologies.
-
-
-
Lotus Notes Logbook Upgrade
NGN currently operate a Lotus Notes application with a bespoke electronic Logbook system to capture all of the activity with day and planned ahead that occurs within our gas control centre. This system has been in operation since 1997 and has proven to be a highly reliable and flexible tool to manage planned works, faults, general site activity and wider issues.
The current technology is outdated and contains years’ worth of data causing it to be slow. There are no links between Lotus notes and other vital control room applications (SCADA etc.). Raising faults becomes a tedious task and the Logbook and other in-apps are not user friendly. There are no updates available to improve the existing system.
The current system needs to be replaced but to achieve that we need a full exploration of where technology can deliver to our requirements, and to fully explore the impact of net zero and what new functionality may be required to manage the transition to net zero.
This is an early stage feasibility project to understand all of the challenges, opportunities and risks that UK GDNs face with their systems, in order to help facilitate the transition to net zero energy systems.
-
-
-
Low Carbon Conversion of Non Domestic Properties Utilising Distributed Natural Gas
This project investigates the technical and economic feasibility of converting non-domestic buildings from natural gas to low carbon energy sources, specifically hydrogen and electricity. It aims to address the significant evidence gap around the conversion of commercial and institutional buildings that are currently supplied by the GB gas distribution networks. The study will assess a wide range of building archetypes, including care homes, schools, hospitality venues, and light industrial sites, using a combination of literature review, site surveys, detailed system designs, and technoeconomic modelling. The outputs will inform future energy policy, support infrastructure planning, and help ensure safe and cost-effective deployment of low carbon technologies in non-domestic settings.
-
-
-
MASiP Phase 3 (Qualification Testing & Integrated System Development)
The MASiP Phase 3 project aims to develop, test, and qualify a new pipeline system (MASiP) as a safe and cost-effective alternative to traditional steel pipelines for pipelines operating above 7 bar, capable of transporting natural gas, biogas, and up to 100% hydrogen. Building on Phases 1 and 2, this phase focuses on the technical assessment of tight radius bends, tees, and damage repair, as well as the integration of live monitoring systems in a prototype operational environment. Comprehensive validation will include connectors, coatings, repair systems, hot-tapping solutions, ground movement tolerance, durability, and design life testing. All testing will be carried out in accordance with IGEM, API, and ASME standards, supported by statistical and independently witnessed trials to generate robust qualification data for industry adoption. The key deliverable is a validated, deployable hydrogen-ready pipeline system that is safe, compliant, and cost-effective, offering potential cost savings of up to 50% compared with steel. The project outcomes will support the UK’s RIIO-GD2 strategy and 2050 net-zero targets by enabling hydrogen-ready infrastructure, improving monitoring, installation efficiency, and long-term reliability, while also providing the evidence base required for regulatory, policy, and industry acceptance of alternative pipeline materials.
-
-
-
NTS Pipeline Assessments Phase 2
This project will build upon previous work to inform decisions relating to the repurposing of National Transmission System pipelines for 100% hydrogen and hydrogen-natural gas blends. New input data will be generated and collated, the assessment methodology will be refined and an alternative assessment method, probabilistic, will be utilised and the resulting network impact will be considered.
This project will generate the following benefits:
- More accurate assessment of the capability of the NTS to transport 100% hydrogen and hydrogen-natural gas blends.
- Data on the impact of low percentage blend hydrogen on pipeline materials.
- Standardised document for Engineering Critical Assessments (ECA) of hydrogen and hydrogen-natural gas blend pipelines and pipework.
Greater understanding on the effect of hydrogen on the design and operation of pipeline systems.
-
-
-
Navigator Project
Situation:
As National Grid ESO transitions to the NESO it will take on the role of Regional Energy Strategic Planners, which will bring a focus on the alignment of Local Area Energy Plans and distribution network planning.
Complication:
Current regional distribution network future energy scenarios are produced by electricity distribution networks. Gas distribution networks do not have an equivalent activity Accordingly, regional and local area energy planning in not informed by a balanced consideration of all energy vectors.
Solution:
An agile and easy to use Whole Energy Systems Pathway (WESP) tool, with detailed temporal and spatial investment planning capabilities, to enable a regional whole energy system planning capability which informs gas network planning, as well as inform national, regional and local planners, in an objective, evidence based. way
-
-
-
Net Zero Impact on Wider Network Contents
This project aims to explore the impact of hydrogen blends (in natural gas), 100% hydrogen and carbon dioxide on contaminants (arisings) likely to be found in gas transmission pipelines (e.g. Naturally Occurring Radioactive Materials (NORMs), dusts, mill scale, welding slag, glycols, water, BTEX, methanol, heavy metals, sulphur compounds, pyrophorics as well as rotating machinery lube/seal oils and valve sealants etc).
The project will aim to understand the current composition and characteristics of any contaminants, the impact of hydrogen and carbon dioxide on the behaviour/composition/presence of contaminants, establish how long methane related contaminants will persist on the network (for repurposed pipelines), the potential for contaminants to cause pipeline gas to go ‘off-spec’ and the implications of contaminant interactions on National Transmission System (NTS) operation/integrity.
-
-
-
Net Zero Multi-Vector Assessment
This project will help Cadent to understand considerations for a Net Zero Multi-Vector at a town scale, to inform future activity on preparation for repurposing. An area will be chosen which is representative of different networks, housing stock and demographics, which will require different approaches and engagement.
-
-
-
Net Zero Multi-Vector Assessment
This project will help Cadent to understand considerations for a Net Zero Multi-Vector at a town scale, to inform future activity on preparation for repurposing. An area will be chosen which is representative of different networks, housing stock and demographics, which will require different approaches and engagement.
-
-
-
Net Zero Safety & Ignition Risk
National Gas are investigating the use of the National Transmission System to transport hydrogen and hydrogen blends. To support this, research and testing is required to understand the risks of high pressure hydrogen transmission, including ignition. This project will identify, for 100% hydrogen and blends of hydrogen up to 20%, the sources of ignition including how the distance of ignition sources affects the likelihood of ignition. It will also investigate the frequency and the different types of ignition events e.g. jet fires. Lastly, it will look at the probability of ignition on sites and in pipework.
-
-
-
Network Policies and Procedures – Development Roadmap
UK gas networks are managed and maintained using an extensive suite of policies, policies standards and procedures. These documents have been developed gradually over decades of gas network operation, however the transition to hydrogen necessitates a wholesale review and update of all existing documents. There is much commonality between the networks’ documents and therefore it would be most efficient to update these documents in a coordinated way to avoid the unnecessary duplication of effort.
-
-
-
NextGen Electrolysis – Wastewater to Green Hydrogen Beta
Wales and West Utilities are partnering with HydroStar, Welsh Water and NGED to look at two demonstrator projects required from new electrolyser systems and the associated electrolyte that ensures resilience of hydrogen supply across the network, giving best value for money and energy security within WWU’s network, along with other UK wide Gas Distribution Network (GDN) customers.
Current electrolysers focus on stack-efficiency and hydrogen purity without considering real-world manufacturing and operational constraints, and the high costs associated. This project focusses on utilising impurified-water, e.g. rainwater, storm-overflow and industrial process wastewater as feedstock, which reduces operational constraints and costs for customers whilst enabling wide-scale uptake of low-carbon hydrogen.
-
-
-
Open Maps
This project has enormous potential to benefit all customers in vulnerable situations as it will provide accurate assessment of communities and all interested parties to provide suitable support to the area. This will enable GDN, DNO, Electricity transmission, and Gas transmission partners such as community groups to specifically target areas with relevant support, this will allow project partners to accurately provide information which will be bespoke to the specific needs of the area such as Carbon Monoxide awareness, Priority Services Register messaging, increasing awareness and registrations.
It will allow GDN’s or other service providers to enlist support for VCMA, BAU or NIA projects directly addressing the needs of communities, rather than adopting a broad-brush approach which has been the traditional approach. This system will present itself as the very foundation for future years projects and investments, specifically as we progress through the energy system transition which will help address the very real and ever-changing needs of communities and vulnerable customers groups by putting data at the front and centre of future decision making for GDN’s and partners.
-
-
-
Pathfinder Enhancements
This project will update the Pathfinder tool, to improve functionality and reflect more current underlying data. Use of the tool developed in this project should result in better choices regarding investment in energy saving measures
-
-
-
Pipeline Installation Techniques for Net Zero
NGT is committed to supporting the government and the broader industry in achieving the Net Zero target by 2050. CCUS, alongside hydrogen, will play a critical role in reaching this goal. Since the existing infrastructure was originally designed for methane, adapting it to transport these new gases presents significant engineering challenges. To address this, an extensive research program has been launched to assess the technical feasibility of repurposing sections of the NTS for hydrogen and carbon dioxide transportation. While repurposing existing pipelines will be an essential part of the transition, it will not be sufficient, new infrastructure will be required to support a scalable hydrogen and carbon network. Given the ambitious deployment timelines, meeting these targets will require not only innovative technical solutions but also a holistic strategy that integrates the supply chain and fosters collaboration across the industry.
-
-
-
Predictive Tool for Unaccounted-For Gas (UAG) Identification
The Unaccounted-for Gas (UAG) project aims to develop a predictive tool that identifies and quantifies UAG across the National Transmission System (NTS). Leveraging 12-18 months of SCADA data, the tool will simulate gas flow and metering behaviour to pinpoint anomalies and reduce losses. UAG currently represents significant financial cost to the consumer; even a 1% reduction could yield practical savings. The project aligns with RIIO-2 NIA criteria and supports regulatory compliance under Special Condition 5.6. It builds on prior research, and integrates learnings from international benchmarks. The initiative will enhance operational efficiency, improve data transparency, and support long-term decarbonisation goals through better system visibility and control.
-
-
-
Preferential Emissions Study
The characteristics of transmission pressure hydrogen and natural gas blends are not fully understood, including relative leakage behaviour. This project will test whether or not methane and hydrogen within a blend leak at the same rates, or whether due to its small size, hydrogen will leak at a ratio greater than its relative concentration, and whether it leaks where methane does not.
Understanding the leak behaviour of hydrogen in a natural gas blend will ensure we can operate a blended system safely, particularly in enclosed spaces, and will ensure that the carbon benefit of hydrogen enrichment is not lost through fugitive emissions. Also, as green hydrogen is currently significantly more expensive than natural gas, the shrinkage costs associated with hydrogen fugitive emissions could be considerable.
-
-
-
Probabilistic Fitness-for-Service Assessment of Hydrogen Pipeline Girth Welds
Repurposing of natural gas pipelines made of carbon steel for use with hydrogen blends requires a fitness-for-service analysis as part of the hydrogen use safety case. Girth welds of an unknown quality exist in the Local Transmission System (LTS). In hydrogen service these welds would have a greater susceptibility to fracture failure due to material embrittlement caused by interaction of steel material with hydrogen.
Current inspection methods do not routinely inspect girth welds for defects. Deterministic defect assessment models require the use of conservative assumptions for defect sizes, material properties and loading. This can lead to overly pessimistic conclusions about the suitability of pipelines with girth welds for use with hydrogen.
More detailed probability-based assessments are required to reduce the inherent pessimism in deterministic calculation methods. This would provide confidence of the safety and allow for greater use of the LTS with hydrogen and contribute to a quicker and cheaper energy transition for the UK gas network.
-
-
-
Project GaIN
As the UK attempts to decarbonise residential heat to meet net zero by 2050, electric heat pumps along with heat networks are expected to play a key role. However, it is generally accepted that no one technology will be able to meet the needs of all households. If we are to deliver affordable low- carbon heating in the residential sector, we shall need as wide a range of technology options as possible to overcome the economic and technical challenges facing every customer.
Project GaIN (Gathering Insights) will explore alternatives to heat pumps and heat networks which can utilise the robust gas network and benefit from its current upgrade programme, supporting the aims of DESNZ’s decarbonisation of heat roadmap. The project will discover and assess additional technology options where alternative solutions might be more costly or difficult to deliver; this will include LAEP system benefits as well as localised CAPEX and OPEX costs.
-
-
-
Project Volta
This project will undertake testing on technology for distributed production of low carbon hydrogen from natural gas, biogas or other short chain hydrocarbons from waste. Which uses 90% less electricity than electrolysis of water and with 68% lower total energy costs.
The project will support early movers and convert gas from our network into a low carbon hydrogen solution. The compact and modular deployment of the technology enables hydrogen production systems to be installed directly at the energy user's site. These systems convert grid-supplied natural gas to hydrogen on demand, eliminating the need for additional infrastructure or on-site hydrogen storage, and leaves the rest of the network unaffected
-
-
-
Reducing Gas Emissions During Pipeline Commissioning
Based on previous work, ROSEN Engineers believe the quantity of natural gas vented during commissioning operations can safely be reduced, by up to 80%, through targeted changes to direct purging procedures.
For Gas Distribution Networks’ (GDNs), gas venting remains a necessary part of normal operations for maintenance or safety purposes. Previous research work undertaken by ROSEN(UK) Limited for the EIC, with project partners Northern Gas Networks (NGN) and Wales and West Utilities (WWU), identified activities where venting of natural gas to atmosphere occurs (Gas Venting Research Project, NIA reference number NIA_NGN_282)
-
-
-
Rethinking Communication for Digital Exclusion
Problem Digital exclusion remains a significant challenge across the UK, preventing many individuals—particularly those in vulnerable circumstances—from accessing critical information and services. As energy networks increasingly rely on digital channels for communication, those without internet access, digital skills, or confidence in using online tools face barriers in receiving important updates, such as emergency notifications and service disruptions. Current communication strategies, while effective for digitally engaged users, fail to reach those who are excluded due to economic, geographic, or personal barriers. This project seeks to bridge this gap by rethinking communication strategies to ensure all consumers, regardless of digital access, receive the information they need in a timely and accessible manner. Project Aims & Key Objectives Building upon the learnings from the previous Digital Exclusion project (NIA_CAD0088), this project aims to develop new, inclusive communication strategies that enhance engagement with digitally excluded individuals. The research project will determine what new approaches may be able to be adopted by energy networks to aid consumers who could otherwise be left vulnerable due to being digitally excluded. By adopting a human-centred approach, the project will:
- Understand how digitally excluded individuals currently access information and navigate daily life.
- Identify barriers in existing energy network communication strategies.
- Co-design and test new approaches that improve information delivery and engagement for those excluded from digital channels.
- Provide recommendations for scalable, long-term improvements in energy communication infrastructure. Project Outputs The project will deliver the following tangible outputs across the following stages: Stage 0 – Outreach
- Identification of priority demographics which are most affected by digital exclusion.
- Engagement with several digital inclusion hubs to identify and introduce stakeholders to the project.
Project Plan – Rethinking Communication for Digital Exclusion
Stage 1 - Insight
- A comprehensive research report detailing the lived experiences of digitally excluded individuals.
- Analysis of existing communication strategies used by energy networks, highlighting gaps and opportunities.
Stage 2 - Collaboration
- A series of co-design workshops engaging key stakeholders to generate and refine potential solutions.
- Prototype solutions tested in real-world settings, with iterative refinement based on feedback.
Stage 3 - Impact
- A strategic roadmap for scaling successful solutions across the energy sector.
- A final report consolidating research insights, prototype evaluations, and recommended implementation strategies. Expected Benefits
- For digitally excluded consumers: More effective, trusted, and accessible communication methods ensuring they receive vital energy-related information.
- For energy networks: Improved customer engagement, compliance with accessibility standards, and enhanced reputation for supporting vulnerable groups.
- For wider stakeholders: Development of scalable best practices that can be applied beyond the energy sector to improve communication with digitally excluded populations. TRL
- Start TRL: 2 (Technology concept formulated)
- End TRL: 5 (Technology validated in a relevant environment)
-
-
-
Rising Pressure Reformer Study
This project will assess the application of Rising Pressure Reformer (RiPR) technology to produce a tuneable blend of biogenic methane and hydrogen, supporting the decarbonisation of gas networks. The project will focus on the how control of the gas produced would fit with requirements for network injection, and assessing locations for connection.
-
-
-
SHINE Non-Electric Boiler
Power outages are a regular occurrence in Great Britian with average annual customer minutes lost in Great Britain range between 31.57 minutes 51.4 minutes depending on the Distribution Network Operator License Area (Statista, 2021). This is of course not evenly distributed with outages varying from a few minutes up to more than a week in more extreme circumstances. Similarly, single outages can affect a single property or several thousand properties depending on the cause. This project will aim to develop a low-cost, user-friendly solution, whereby customers in vulnerable situations will still be able to use their gas heated boiler, as well as LPG and oil heated boilers, in the event of a power outage.
-
-
-
Scaling Hydrogen with Nuclear Energy (SHyNE)
Significant efforts are required to support the transition of our energy systems moving away from carbon-intensive fuels such as coal, diesel, petrol and gas, towards cleaner sources of power generation such as wind, solar, nuclear and hydrogen. There is a potential for hydrogen to play a hugely significant role in our energy system, the extent of which will be driven by a range of factors, including the ability to transport it to where it is needed. There have been recent positive decisions for hydrogen’s potential uses in blending, transportation, domestic heating and industry. To produce sufficient hydrogen to meet this potential need, it will be important to increase and diversify hydrogen production methods.
As nuclear is a reliable and consistent source of clean energy that is unaffected by external factors such as the weather, Northern Gas Networks and Wales and West Utilities would like to investigate the possible use of nuclear power as a method of delivering the future increased demand in hydrogen production. This project will explore the opportunity for hydrogen production from nuclear to support a net zero transition across the gas network.
Benefits of nuclear-enabled hydrogen (NEH) in the context of gas distribution networks (GDNs) will be explored, building on the established benefits of nuclear energy production.
The overall project outcome is that NGN, WWU, and other stakeholders are sufficiently informed to determine whether further investment and integration of nuclear-enabled hydrogen to transition plans are justified, and how a potential first project could take its next step to deployment through securing technology licences, sites, off takers and financing.
-
-
-
Sector Size Assessment
This project will deliver a series of reports and presentations which reflect the need to minimise disruption during any conversion taking into account customer needs and the wider supply chain not just the needs of the GDN.
-
-
-
Simplifying Low Carbon Heat
The study will identify the significant technical, fiscal and political challenges current heat decarbonisation strategy faces, and outline an alternative approach involving greater use of hybrid devices that offers both lower consumer costs and greater potential to cut carbon emissions than projected based on current policy and consumer behaviour. Arguments will be presented through four linked pieces of analysis:
- An examination of the costs of the Government’s Clean Heat Market Mechanism (a key policy intervention to promote heat pumps in the appliance market).
- An approximation of the additional network upgrade requirement early transfers to heat pumps represent in comparison to hybrids.
- A view on what extending the Green Gas Levy beyond its current cut-off date could do to the emissions intensity of the gas distribution network (by encouraging more biomethane production).
- Voter polling that analyses their view on different approaches to heat decarbonisation.
The paper will include a series of policy recommendations for government to take forward in order to enhance progress on decarbonisation of domestic heat.
-
-
-
Standardised Biomethane Connection Designs
National Gas has seen a significant increase in the number of enquiries from biomethane developers for connections to the NTS.
There are currently circa 66 projects the connections team have identified as having NTS connection potential, with an associated volume of 5.9TWh per annum.
Developers are attracted to the NTS for numerous reasons, but the following are the main drivers:
- No injection of propane or odorant
- Capacity and capability
To speed up time to connect to a biomethane facility this project was developed to produce an innovative standardised design for a Minimum Offtake Connection (MOC) in a pit.
-
-
-
Stopple-Live trial (Phase 2)
The Stopple technology is a flow stop tool essential for major projects and emergency works across the LTS and NTS gas network. Its capability was tested in 100% hydrogen within a helinite environment, in line with LTS Futures parameters as phase 1. This project focuses on validating flow-stopping technology as an additional deliverable with LTS Futures live hydrogen trial on the Granton to Grangemouth pipeline as a welded tee and hot-tapping operations is already being carried out. The trial will confirm the Stopple train’s effectiveness as a double-block and bleed solution for a 100% hydrogen system which will be available for the UK Gas Network. The findings will provide critical insights into the safe and efficient operation of the hydrogen networks supporting the transition from natural gas to hydrogen.
-
-
-
The Impact of District Heating on Our Network
This project will investigate the potential impacts of district heating on the gas network, whether its viable for the network to support district heating and what repurposing would be required.
-
-
-
The Potential of Biomethane to Accelerate the Decarbonisation of UK HGVs
The following is a proposed outline for a report on the decarbonisation benefits and potential of biomethane in the UK Road Haulage sector.
The report will position biomethane as:
- A complimentary technology to zero tailpipe emission vehicles that offers faster decarbonisation potential due to the near-term infrastructure scalability of the technology and the suitability for long distance and non-fixed route logistics.
- A cost-effective way to reduce Carbon emissions by over 84% over the next 15-20 years whilst zero tailpipe emission technologies are developed, and the supporting infrastructure is deployed.
- An enabler to the transition to zero tailpipe emission vehicles by offering reduced carbon abatement costs that, in turn, can generate funds to invest in zero emissions infrastructure and vehicles.
It will serve as a reference document for discussions with industry stakeholders, governments, and regulators.
-
-
-
Understanding the value of remote detectors
The statistical ‘value’ (i.e. risk reduction and cost) of remote hydrogen detectors has been determined through statistical based projects as part of the hydrogen heating programme (HHP). The cost has been shown to outweigh the risk, however, given hydrogen is not a mature heating solution, the cost can be justified in response to risk appetite from key stakeholders, such as consumers. This risk appetite is assumed. There is currently no analysis (qualitative or quantitative) into consumers attitudes towards the ‘value’ of remote detectors. This project will begin to explore the perception of risk reduction from remote detectors to be used to compliment the statistical based analysis to paint a fuller picture towards the utilisation and crucially, the value, of remote detectors.
-
-
-
Welding Residual Stress Measurements and Analysis for Gas Pipelines
This project concerns the research into welding residual stress values and the effect that they have on the overall pipework repurposing assessment route described in relevant hydrogen standards. Currently, overly conservative values need to be applied for welding residual stresses in any repurposing assessment. This project aims to build evidence on actual and modelled residual stresses seen within the pipelines industries, with a focus on natural gas pipelines. As the welding residual stress is a critical aspect of the fracture mechanics assessment, any improvements which can be gained would have an overall positive impact on the assessment results.
-
-
-
Wireless Methane Odorant Detector
This project aims to improve natural gas leak detection for over 3.5 million people with acute smell disorders e.g. anosmia. Traditional methane sensors require high power, limiting placement. The legally required odorant (80% tert-butyl mercaptan and 20% dimethyl sulphide) will continue as the UK transitions to hydrogen or blends, necessitating re-calibration of detectors.
Our solution is an odorant-based gas detector using a custom ultra-low power electrochemical sensor to measure TBM. These sensors operate for over 10 years on a sealed lithium-ion battery, detecting TBM from 20-30ppb (below our smell threshold) up to 1,500ppb (20% of the Lower Explosion Level), ensuring early warning of gas leaks.
With no natural sources of TBM, false positives are eliminated. The Sensor is ‘hydrogen ready,’ maintaining consistent odorant levels during the transition to hydrogen or blends, accurately notifying of gas leakage without reconfiguration.
-