- Home
- Publishers
- Future Energy Networks
Future Energy Networks
45 results
-
-
Achieving Future Hydrogen Demand
This project constitutes a research study assessing the future demand for hydrogen across SGN regions and the role SGN infrastructure could play in facilitating access to hydrogen.
As the UK transitions to a low-carbon energy future, gas networks must consider how strategic utilisation of existing assets can be realised. Using SGN’s extensive gas network to carry hydrogen instead of natural gas would be a major step towards decarbonisation. This repurposing necessitates an understanding of both the technical feasibility of repurposing pipelines to carry hydrogen, and future hydrogen demand requirements.
-
-
-
Alt Pipe
As the owner of the National Transmission System (NTS), National Gas is committed to responsibly managing our redundant assets in a manner that contributes to a sustainable, lower-carbon future by decommissioning them responsibly, refurbishing for re-use where viable, and/or or changing their purpose where possible. This discovery project will identify decommissioned elements of redundant pipework on the transmission system which are unlikely to be used for refurbishment or part of any wider repurposing of the core network, and explore the potential of repurposing these for alternative uses including the storage and/or transmission of electrical energy, heat, fuels, water and data.
-
-
-
Application of Functional Blending - Testing a Market-led Approach
Wales & West Utilities has developed a Regional Decarbonisation Pathway to provide an overarching strategic plan for the network in Wales and the South West of England. To deliver that pathway, more detailed assessment and planning is required to facilitate the progression of opportunities in particular areas.
In 2023, WWU supported Cadent as the lead partner in the development and delivery of a Functional Blending Specification (FBS) which has progressed the technical understanding of how blending equipment can be practically applied within the context of existing gas network assets (https://smarter.energynetworks.org/projects/NIA_CAD0079/). In 2023, UK Government affirmed their support for network blending whilst networks have continued to develop evidence in support of blending since (Hydrogen blending in GB distribution networks: strategic decision - GOV.UK (www.gov.uk)).
-
-
-
Assessing Energy Impacts via Thermal Analysis
The project aims to use a vehicle-mounted thermal camera and Artificial Intelligence (AI) to detect heat loss from homes on a city-wide scale. The data will be used to assess the condition of a property regarding its ability to retain heat and provide tailored recommendations addressing insulation problems. This critical first step allows for better targeting of necessary retrofits and offers a scientifically measured alternative or complementary approach to traditional EPC.
-
-
-
Asset Compatibility Assessment Tool for Transmission
Following completion of Phase 2 of the H21 Hydrogen Ready Components project, this project will look to extend the methodology developed under this project to encompass the assessment of assets operating above 7 barg. The assessment tool will be incorporated into the LTS Futures blueprint methodology for repurposing existing Natural Gas transmission assets to hydrogen. The scope will include transmission assets above 7 barg and up to the maximum transmission pressure of 94 barg and will focus on the conversion to 100% hydrogen. Assets in scope will cover both above and below ground assets, and include bends, valves, regulators, slam shuts, relief valves, and pig traps. Assets excluded include pipelines, compressors and cast iron components.
-
-
-
Asset Records Readiness for Hydrogen
The project will evaluate and deliver a plan that ensures our asset records are suitably complete to support the net zero transition.
The project will reduce uncertainty and risk and provide a more realistic proximation of asset data.
The HSE has indicated that it will be unable to support a network’s hydrogen safety case until they receive “a clear plan for checking unknown assets and how networks will ensure that only suitable materials are present in the network”. This includes our transmission pipelines.
Additionally, for the marginal extra effort, it would be prudent to ensure the completeness of our asset records is sufficient for us to either plan for the conversion to hydrogen or decommission sections as users switch to other heating technologies.
-
-
-
Augmented Reality Futures Close
Augmented Reality (AR) technology will be used at Futures Close to convey and inform various audiences including vulnerable consumers about various property archetypes, their construction, heat loss, and the type of retrofit solutions (heating systems, controls, fabric improvements) available to improve the level of domestic energy efficiency. AR will be used to inform, educate and engage audiences on-site at Futures Close as well as off-site at conferences and meetings avoiding the need to facilitate multiple visits on site. Live data feeds will also be visualised, illustrating room-by-room temperature, humidity as well as other metrics providing an engaging, interactive and informative asset for Futures Close.
-
-
-
Biomethane Islands
To achieve decarbonisation targets all gas network operators in the UK need to demonstrate that the gas network can safely, technically and economically facilitate the distribution of low-carbon gases (biomethane and hydrogen). In response to this challenge, SGN aim to review the feasibility of the formation of biomethane islands in their Scotland area of operation. The outputs of this project will establish a business model for the optimisation of biomethane injection and formation of biomethane islands across the UK’s gas network. A feasibility study will address key areas including regulatory, technical, environmental, social, and commercial aspects as well as comprehensively assess the viability of developing Biomethane Islands. The outcome of the feasibility study will be to inform decision-making regarding project implementation. This will be captured and delivered in a comprehensive report and financial model of the business case. These islands will serve as models for sustainable living, demonstrating the feasibility and benefits of a circular economy approach to energy production and waste management and offer a low disruption option for the decarbonisation of all classes of gas consumers - Industrial, Commercial, and Domestic.
-
-
-
Carbon Networks
As the UK transitions to a low-carbon energy future, gas networks must consider how strategic utilisation of existing assets can be realised. GDNs must also consider adjacent markets such as CCUS and its role in the supply chain now and in the future. The project will take a pragmatic approach to provide SGN with an assessment of the role of the gas network in the growing UK CCUS market
-
-
-
Cominglo – Blended CV Measurement Point
This project seeks to improve the accuracy of CV measurement in gas networks which distribute blended gas streams. Element Digital Engineering will address this by first studying the physics of gas blending in the gas network using Computational Fluid Dynamics (CFD). A wide range of simulations will enable the effects of different designs and mixing technologies to be understood in relation to the various gases under consideration. The predictions of these CFD studies will be validated through the design and development of a rig to simulate blending in the network. The overall results of these studies will be used to develop a tool that can be deployed within the gas networks to facilitate the accurate prediction of co-mingling, and subsequent CV measurement points supporting the design of blending systems.
-
-
-
Commercial Vehicle Fleet – Development of Total Cost of Operation Model
Decarbonisation of UK transport, and the related Zero Emission Vehicle (ZEV) mandate requires companies to transition their commercial vehicle fleets to Battery Electric Vehicles (BEV) or alternative new emerging technologies (e.g. FCEC). As an operational utility network with responsibility for public safety WWU’s fleet undergoes a more challenging and varied range of duty cycles than most commercial fleets, includes vehicles that are required to provide on-site power, and must be capable of meeting WWU’s statutory duty to respond quickly to Public Reported Escapes.
Within this challenging operational context, WWU must deliver a fleet transition at the lowest feasible cost to assure value for money for our customers. This is further complicated by the need to plan the fleet transition while the associated technological and policy landscape continues to evolve in parallel. Although the learnings generated from the project will be specific to WWU’s fleet as a case study, they will be applicable to any networks with an operational fleet.
To assure a cost-effective transition and derisk future operations, WWU require a Total Cost of Operation (TCO) model. This will be specifically targeted at our particular operational context, capable of assessing the costs and capabilities of a range of ZEV options, and crucially must be easy for staff to adopt for internal use and update in the future as new data and/or technologies become available.
The purpose of this project is to provide WWU with a TCO model that addresses our specific operational requirements, ensuring that plans and investment decisions will be grounded in real-world technology assessments and our operational fleet data.
-
-
-
Decentralised Alliance for South West Hydrogen (DASH)
Early cluster projects will not benefit I&C customers that are located away from industrial clusters and are traditionally more distributed in nature. These customers are unlikely to have access to hydrogen infrastructure developed through the primary industrial clusters. This presents the need for an alternative solution.
This project will explore the concept of how a larger number of low-volume hydrogen producers can support I&C customers in the absence of natural ‘clustering’ and high-volume production by using the South West region of WWU’s network as a case study. This will be done by exploring the whole systems concept of a gas network which is driven by distributed green hydrogen production at strategic locations where there is access to both gas and electricity grid infrastructure.
-
-
-
Decentralised System Resilience
This project constitutes a research study investigating the opportunities for gas network infrastructure to support storage and balancing in a decentralised UK energy system. The research will consider how a decentralised system might look in the UK from now until 2030, and onto 2050. An evaluation will be made of how other countries are approaching decentralisation, identifying examples the UK could draw on. Consideration will be given to how grid balancing will be achieved across various scenarios of peak demand and particular geographic locations in the UK and what challenges and opportunities this presents to gas networks.
-
-
-
Demonstrating Downstream Procedures For Hydrogen
This project involves a comprehensive set of tasks aimed at implementing and validating a domestic safety system for hydrogen use, including excess flow valves.
-
-
-
Determining Future Energy Demand of B&R Team Vans with Full On-Board Power
Wales & West Utilities is undertaking a major programme of change to support decarbonisation and deliver a Net Zero gas network. Decarbonisation of the vehicle fleet is an integral component of that programme.
WWU operates a fleet of nearly 1,400 commercial vehicles, the majority of these being vans up to 3.5 tonnes GVW. Our fleet – mostly diesel-fuelled - plays a crucial role in providing a safe and efficient service. In addition to our vehicle fleet, WWU operates ~ 900 items of mobile plant, including mini diggers and a wide range of trailers, many of which are specialised.
WWU vans carry a wide range of power-operated tools and equipment, some of this currently being powered by hydrocarbon fuels, some by electricity and some by compressed air. Approximately a third of our van fleet (~400 units) is equipped with ‘full on-board power’ – a compressor and generator, mounted under the van floor and mechanically driven by the diesel engine and operating as a source of on-site power.
This group of vehicles primarily supports below-ground network repair and replacement activity: it is a significant energy consumer, so to help us understand how we can make an operationally cost-effective transition to zero emissions, it is the on-site energy requirements of the tools and equipment powered by this group that Cenex will evaluate for this project. This evaluation will provide information which can take account of (and feed in to) a range of different scenarios for the fleet in the future, such as changes to the number and type of vans allocated to particular teams and projects.
-
-
-
Digital Decommissioning of Large-Scale Equipment
As the Gas Transmission network responds to a changing energy system, from drivers including the transition to net zero and to changes in supply and demand, we are required to decommission our large site based assets in certain locations. Decommissioning is a multifaceted endeavour that goes beyond the conclusion of an asset’s lifespan and encompasses a complex deconstruction process. This project will implement an innovative AI tool to help National Gas manage decommissioning to drive benefits such as increasing the accuracy of cost estimation, ways to reduce carbon emissions, identify re-use potential and lower the overall time taken to decommission.
-
-
-
Energy Plan Translator
Develop a flexible and adaptable toolset for the rapid analysis of Local Area Energy Plans (LAEPs). This will convert qualitative statements to quantified metrics and identify key network specific planning parameters.
-
-
-
Enhancement of the anaerobic digestion process for biomethane production
The UK Government recognised that domestic biomethane production can play a significant role in decarbonising energy supplies. However, biomethane production plants face technical and operational challenges. Currently the content of biomethane within biogas produced from the anaerobic digestion (AD) process is often only around 50%. This partial conversion results in lower yields for AD operators and an increase in costly gas scrubbing requirements. The increased presence of impurity gases also increases requirement for propanation to increase the calorific value, high in both cost and carbon footprint.
This project seeks to address these challenges through the injection of green hydrogen into the AD process in specific quantities and at specific times to achieve greater conversion of carbon dioxide to biomethane within the acetogenesis stage of the AD process, thereby increasing the yield whilst reducing the need for gas scrubbing and propanation.
-
-
-
Fairer Warmth Hub
The Fairer Warmth Hub (FWH) connects stakeholders of the Net Zero Transition through place-based strategies, providing tools and guidance to facilitate local energy plans and enhance collaboration. The FWH integrates digital tools and community engagement to facilitate effective communication and planning among diverse stakeholders, including households, small businesses, and local authorities. FWH is designed to bridge the gap in the energy transition by providing tailored support to these stakeholders, ensuring that the transition is inclusive and just. The FWH integrates three core elements:
- Trained ‘Champions’ – Volunteers or staff, known as Champions, are recruited and trained to support community engagement, helping to build trust and reduce miscommunication in local energy initiatives.
- Digital Tools (Virtual Assets) – Innovative digital tools (App + Website) and resources are used to facilitate energy transition planning and community engagement, particularly assisting Customer In Vulnerable Situation (CIVS) and those who are digitally excluded.
- Community Centres (Non-Virtual Assets) – Physical community hubs serve as accessible locations for hands-on support, providing a space for CIVS and other stakeholders to engage directly in the energy transition.
-
-
-
Finding the Hidden Vulnerable
This innovation project proposal is centred on trialling the development of a predictive model to identify customers in vulnerable situations whose heat comes from Cadent delivered gas that are missing out on the protections that the Priority Service Register (PSR) brings because they are “hidden” behind a non-domestic supply contract. The aim of the predictive model would be to aid Cadent to find these customers so that it can be ensured that they receive the support that they need in the event of an interruption to supply.
-
-
-
Forecaster for Embedded Generation (FEmGE)
Gas networks supply embedded power stations that support the electricity network. These embedded generators can fire up without any warning to GDNs and is causing significant challenges to gas networks.
GDNs are required to submit hourly gas demand nominations to National Gas for each offtake point within specified time deadlines.
Embedded generators are small. They are not included in the UNC’s requirements to notify their GDN of intended offtake activity due to their size being below the threshold for NExAs (network exit agreements). Despite this, GDNs must include the demand from these embedded generators in their nominations to ensure there is sufficient gas within their network. This causes numerous challenges for SGN and other GDNs.
GDNs’ current forecasting process does not specifically forecast embedded gas generation, and current models do not take inputs from the electricity market. Embedded generators act in a variety of electricity markets, yet GDNs don’t have visibility of this demand.
It is anticipated that additional embedded generators will connect in the coming months/years as the demand for electricity increases.The challenge of not having knowledge of embedded generator’s demand and its potential to contribute to a storage shortage has been acknowledged by both EGRIT (Electricity and Gas Resilience Task Group) and NESO (National Energy System Operator). The benefits of creating a notification platform supported by a ML engine are various. Namely to develop an ML-enabled forecasting tool to predict gas demand from embedded generators with increased accuracy as delivery time approaches. In addition to create a notification platform to improve real-time visibility of embedded generator activities within the electricity and gas networks.
This NIA project aims to progress the FEmGE forecasting tool from TRL 1 to TRL 7, delivering a fully functional MVP. NGN will be funding this project to the value of £92,333 and SGN to £184,666 of the total of £276,999.
-
-
-
Future Hydrogen Safe Control of Operations (SCO) Procedures
Following the work completed on the policies and procedures project by QEMS, WWU have identified the requirement to update and re-vamp the existing Safe control of operations (SCO) procedures used by the network to support delivery of upcoming projects.
-
-
-
Futures Close Heat Programme (FC Heat)
To reach our national net zero targets by 2050, we need to decarbonise approximately 25 million homes in England. Domestic heating accounts for approximately 14% of the UKs entire emissions and significant investment is required to improve the energy efficiency of our housing stock. In addition, there are major challenges associated with domestic decarbonisation:
- England has the most diverse housing stock in the UK. with 35% built before the end of WWII.
- Sixty-four percent are owner-occupied, and these homeowners need to have a good, cost effective and efficient experience of home and heating upgrade as we move towards zero carbon homes.
- Implementing heating upgrades to this ageing housing stock requires a ‘whole house’ approach therefore, consideration must be given to the building fabric and heating system.
Retrofitting existing homes with electric heating systems or deployment of green hydrogen boilers offer potential solutions however, the intricacies of deployment and installation are complex, further research and development is required to learn more about installation, performance of various heating options. Doing so will inform future domestic decarbonisation strategies.
-
-
-
H2 Housing Design
This project will explore ventilation and explosion relief requirements for housing currently used on the gas network for pressure regulating installations (PRIs). Housings currently provide security from a range of factors from weather to vandalism, while also providing the necessary relief requirements in the event of an emergency. The understanding of these requirements for Natural Gas has been developed, however, work conducted in the IGEM TD/13 hydrogen supplement did not fully address whether these design specifications are suitable for use with Hydrogen. This multi-stage project will first explore the design specifications listed in industry standards (IGEM/TD/13, GIS/PRS/35, SGN/SP/CE/10, etc) and understand which of these may be appropriate and which may require redesign. The latter stage of this project will take the design specifications deemed to be unsuitable for use with hydrogen and conduct testing to develop revised design specifications which would provide the necessary relief requirements.
-
-
-
H2 Rail
This project will explore the feasibility of integrating hydrogen train refuelling infrastructure to support the development of a hydrogen rail network. This has particular relevance to our network as some of the UK’s hardest to electrify rail routes are situated in Wales and South West England. The project will focus on these hard to electrify routes, exploring H2’s potential role in enabling their decarbonisation. If successful, this project can help the WWU network to become a proving ground for real-world delivery of impactful H2 rail technology. It is expected to provide information which can be used in planning strategic hydrogen pipeline routes and network repurposing plans, and support regional energy planning.
-
-
-
Hydrogen Ignition Risk from Static and Autoignition (HIRSA) Stage 2B – Static Generation experimentation
The key subject of HIRSA stage 2 projects is to understand if using hydrogen in the gas network will result in an increased likelihood of ignition from static discharge generated by particulates in flowing gas. Building on stage 2A, stage 2B will provide further experimental testing aimed at determining the absolute difference in electrostatic charge generated, identify whether any external factors impact one gas more than the other, and to control the factors affecting generation of the charge. The outputs of this work should provide the industry with a better understanding of the potential change in ignition risk when switching from Natural Gas to hydrogen and will also highlight relevant mitigations to manage this risk.
-
-
-
Hydrogen Permeation through the Oxide Layer Phase 1
This project is looking to address uncertainties surrounding LTS pipeline materials by investigating the effect of the oxide layer on hydrogen permeation rate for steel pipelines. This project will also investigate the formation of an oxide layer inside the pipe at different temperatures, as well as how the microstructure of the pipeline steel and condition of the oxide layer affect permeation for different grades of steel. It is critical this relation is better understood as these uncertainties are currently hindering our ability to fully and accurately assess the repurposing of the LTS. The outcomes of this project have the potential to increase cost-savings and improve confidence in the existing network to carry hydrogen, including blends.
-
-
-
Hydrogen Rollout Assessment
This project will help WWU to understand considerations for 100% Hydrogen Rollout at a town scale, to inform future activity on preparation for repurposing. Areas will be chosen which are representative of different networks, housing stock and demographics, which will require different approaches and engagement.
-
-
-
Integrity Management of Gaseous Carbon Dioxide Pipelines
Existing defect assessments and repair methodologies are aligned with the P/11, P/20 and PM/DAM1 management procedures and are adopted to inspect, assess and repair the pipelines for defects and take suitable measures to reduce them. However, the scope and applicability of these assessment and repair methodologies in the presence of gaseous phase carbon dioxide remain uncertain. The key challenges which the project aims to address are:
- Will existing repair techniques such as epoxy shell, welded shells, composite wraps, gouge dressing etc. be suitable for transmission of gaseous phase carbon dioxide?
- What are the different defects we may encounter or consider hazardous in the presence of carbon dioxide? What are the impacts of carbon dioxide on each defect type? And how much does water/corrosion exacerbate this?
- Have the mechanisms of failure for each defect type changed after introducing carbon dioxide?
- Can we implement the assessment and repair methodologies safely? Are the techniques safe and suitable for the pipeline operations and maintenance teams?
The project seeks to answer the above in addition to understanding the types and extent of repairs across the NTS and review the impact of carbon dioxide on the effectiveness of these inspection, assessment and mitigation technologies.
-
-
-
Integrity Management of Hydrogen Pipelines
Existing defect assessments and repair methodologies are aligned with the T/PM/P/11 and T/PM/P/20 management procedures and are adopted to inspect, assess and repair the pipelines for defects and take suitable measures to reduce them. However, the scope and applicability of the repair techniques in the presence of high-pressure hydrogen remain uncertain. The key questions which form an outline of the project are:
- What are the different types of defects, we may encounter or consider injurious in the presence of hydrogen?
- What is the impact of hydrogen on each defect type? Have the mechanisms of failure changed for each defect type after hydrogen-natural gas blending?
- Will the existing repair techniques be applicable under transmission of high-pressure hydrogen and hydrogen-natural gas blends?
- Can we implement the defect assessment, inspection and repair methodologies safely? Are the techniques safe and suitable for the pipeline operations and maintenance teams?
The project seeks to answer the above in addition to understanding the types and extent of repairs across the NTS and assess the impact of hydrogen on the effectiveness of these inspection, assessment and mitigation technologies.
-
-
-
MASiP H2 Technical Development
MASiP Phase 2 is a technical development project with identified go/no-go milestone as key factors as to whether further qualification testing should be completed. This necessity is due to the requirement to have a repair technique prior to any deployment for onshore pipelines. The project intends to deliver detailed methods statements created for the qualification testing plan require for product qualification. The most stringent testing parameters were defined from IGEM, ASME, API 15S in phase 1 to ensure that industry wide acceptance of this new approach would be received
-
-
-
Materials Qualification for Hydrogen Pipelines
Current IGEM standards for requirements of qualification testing of onshore pipelines do not contain guidance on specific tests for hydrogen. SGN has engaged PIE to develop a material qualification procedure for inclusion in standards for assets in hydrogen service
When completed, the project will identify relevant criteria for fatigue and learning from this project can be applied to other operations to facilitate safe transition to 100% hydrogen
-
-
-
Navigator Project
Situation:
As National Grid ESO transitions to the NESO it will take on the role of Regional Energy Strategic Planners, which will bring a focus on the alignment of Local Area Energy Plans and distribution network planning.
Complication:
Current regional distribution network future energy scenarios are produced by electricity distribution networks. Gas distribution networks do not have an equivalent activity Accordingly, regional and local area energy planning in not informed by a balanced consideration of all energy vectors.
Solution:
An agile and easy to use Whole Energy Systems Pathway (WESP) tool, with detailed temporal and spatial investment planning capabilities, to enable a regional whole energy system planning capability which informs gas network planning, as well as inform national, regional and local planners, in an objective, evidence based. way
-
-
-
Open Maps
There is currently no method for organisations to easily know where to target their work based on feedback from third sector organisations and public bodies. Creating a map of current actual need, which also shows where delivery has happened and is planned will be game changing for both customers and funding organisations as it will ensure work is carried out where there is absolute tangible need rather than modelled demand. It will also allow on the ground resource to sign post their service users to the most effective method of support. Open Maps enables GDPR compliant data sharing – vital to unlocking important insights that can change the lives of vulnerable customers and help organisations to make better business decisions.
-
-
-
Pathfinder Enhancements
This project will update the Pathfinder tool, to improve functionality and reflect more current underlying data. Use of the tool developed in this project should result in better choices regarding investment in energy saving measures
-
-
-
Probabilistic Fitness-for-Service Assessment of Hydrogen Pipeline Girth Welds
Repurposing of natural gas pipelines made of carbon steel for use with hydrogen blends requires a fitness-for-service analysis as part of the hydrogen use safety case. Girth welds of an unknown quality exist in the Local Transmission System (LTS). In hydrogen service these welds would have a greater susceptibility to fracture failure due to material embrittlement caused by interaction of steel material with hydrogen.
Current inspection methods do not routinely inspect girth welds for defects. Deterministic defect assessment models require the use of conservative assumptions for defect sizes, material properties and loading. This can lead to overly pessimistic conclusions about the suitability of pipelines with girth welds for use with hydrogen.
More detailed probability-based assessments are required to reduce the inherent pessimism in deterministic calculation methods. This would provide confidence of the safety and allow for greater use of the LTS with hydrogen and contribute to a quicker and cheaper energy transition for the UK gas network.
-
-
-
Rising Pressure Reformer Study
This project will assess the application of Rising Pressure Reformer (RiPR) technology to produce a tuneable blend of biogenic methane and hydrogen, supporting the decarbonisation of gas networks. The project will focus on the how control of the gas produced would fit with requirements for network injection, and assessing locations for connection.
-
-
-
SHINE (Non-Electric Boiler)
Power outages are a regular occurrence in Great Britian with average annual customer minutes lost in Great Britain range between 31.57 minutes 51.4 minutes depending on the Distribution Network Operator License Area (Statista, 2021). This is of course not evenly distributed with outages varying from a few minutes up to more than a week in more extreme circumstances. Similarly, single outages can affect a single property or several thousand properties depending on the cause. This project will aim to develop a low-cost, user-friendly solution, whereby customers in vulnerable situations will still be able to use their gas heated boiler, as well as LPG and oil heated boilers, in the event of a power outage.
-
-
-
Scaling Hydrogen with Nuclear Energy (SHyNE)
Significant efforts are required to support the transition of our energy systems moving away from carbon-intensive fuels such as coal, diesel, petrol and gas, towards cleaner sources of power generation such as wind, solar, nuclear and hydrogen. There is a potential for hydrogen to play a hugely significant role in our energy system, the extent of which will be driven by a range of factors, including the ability to transport it to where it is needed. There have been recent positive decisions for hydrogen’s potential uses in blending, transportation, domestic heating and industry. To produce sufficient hydrogen to meet this potential need, it will be important to increase and diversify hydrogen production methods.
As nuclear is a reliable and consistent source of clean energy that is unaffected by external factors such as the weather, Northern Gas Networks and Wales and West Utilities would like to investigate the possible use of nuclear power as a method of delivering the future increased demand in hydrogen production. This project will explore the opportunity for hydrogen production from nuclear to support a net zero transition across the gas network.
Benefits of nuclear-enabled hydrogen (NEH) in the context of gas distribution networks (GDNs) will be explored, building on the established benefits of nuclear energy production.
The overall project outcome is that NGN, WWU, and other stakeholders are sufficiently informed to determine whether further investment and integration of nuclear-enabled hydrogen to transition plans are justified, and how a potential first project could take its next step to deployment through securing technology licences, sites, off takers and financing.
-
-
-
Stopple-Live trial (Phase 2)
The Stopple technology is a flow stop tool essential for major projects and emergency works across the LTS and NTS gas network. Its capability was tested in 100% hydrogen within a helinite environment, in line with LTS Futures parameters as phase 1. This project focuses on validating flow-stopping technology as an additional deliverable with LTS Futures live hydrogen trial on the Granton to Grangemouth pipeline as a welded tee and hot-tapping operations is already being carried out. The trial will confirm the Stopple train’s effectiveness as a double-block and bleed solution for a 100% hydrogen system which will be available for the UK Gas Network. The findings will provide critical insights into the safe and efficient operation of the hydrogen networks supporting the transition from natural gas to hydrogen.
-
-
-
The Impact of District Heating on Our Network
This project will investigate the potential impacts of district heating on the gas network, whether its viable for the network to support district heating and what repurposing would be required.
-
-
-
The Potential of Biomethane to Accelerate the Decarbonisation of UK HGVs
The following is a proposed outline for a report on the decarbonisation benefits and potential of biomethane in the UK Road Haulage sector.
The report will position biomethane as:
- A complimentary technology to zero tailpipe emission vehicles that offers faster decarbonisation potential due to the near-term infrastructure scalability of the technology and the suitability for long distance and non-fixed route logistics.
- A cost-effective way to reduce Carbon emissions by over 84% over the next 15-20 years whilst zero tailpipe emission technologies are developed, and the supporting infrastructure is deployed.
- An enabler to the transition to zero tailpipe emission vehicles by offering reduced carbon abatement costs that, in turn, can generate funds to invest in zero emissions infrastructure and vehicles.
It will serve as a reference document for discussions with industry stakeholders, governments, and regulators.
-
-
-
Understanding the value of remote detectors
The statistical ‘value’ (i.e. risk reduction and cost) of remote hydrogen detectors has been determined through statistical based projects as part of the hydrogen heating programme (HHP). The cost has been shown to outweigh the risk, however, given hydrogen is not a mature heating solution, the cost can be justified in response to risk appetite from key stakeholders, such as consumers. This risk appetite is assumed. There is currently no analysis (qualitative or quantitative) into consumers attitudes towards the ‘value’ of remote detectors. This project will begin to explore the perception of risk reduction from remote detectors to be used to compliment the statistical based analysis to paint a fuller picture towards the utilisation and crucially, the value, of remote detectors.
-
-
-
Welding Residual Stress Measurements and Analysis for Gas Pipelines
This project concerns the research into welding residual stress values and the effect that they have on the overall pipework repurposing assessment route described in relevant hydrogen standards. Currently, overly conservative values need to be applied for welding residual stresses in any repurposing assessment. This project aims to build evidence on actual and modelled residual stresses seen within the pipelines industries, with a focus on natural gas pipelines. As the welding residual stress is a critical aspect of the fracture mechanics assessment, any improvements which can be gained would have an overall positive impact on the assessment results.
-
-
-
Wireless Methane Odorant Detector
This project aims to improve natural gas leak detection for over 3.5 million people with acute smell disorders e.g. anosmia. Traditional methane sensors require high power, limiting placement. The legally required odorant (80% tert-butyl mercaptan and 20% dimethyl sulphide) will continue as the UK transitions to hydrogen or blends, necessitating re-calibration of detectors.
Our solution is an odorant-based gas detector using a custom ultra-low power electrochemical sensor to measure TBM. These sensors operate for over 10 years on a sealed lithium-ion battery, detecting TBM from 20-30ppb (below our smell threshold) up to 1,500ppb (20% of the Lower Explosion Level), ensuring early warning of gas leaks.
With no natural sources of TBM, false positives are eliminated. The Sensor is ‘hydrogen ready,’ maintaining consistent odorant levels during the transition to hydrogen or blends, accurately notifying of gas leakage without reconfiguration.
-