Projects
Project Remo2val
The use of greener gases such as biomethane are an important part of the UK’s transition to net zero. Underground storage sites for biomethane are critical for balancing seasonal supply and demands for energy. However increased levels of oxygen in biomethane can lead to corrosion of assets in wet gas conditions compromising the integrity of storage facilities. This project will assess in a comparative analysis the technical and economic viability of advanced catalytic and adsorption technologies to reduce oxygen levels in biomethane with corrosion inhibitors to ensure the integrity and longevity of critical storage infrastructure.
Navigator Project
Situation:
As National Grid ESO transitions to the NESO it will take on the role of Regional Energy Strategic Planners which will bring a focus on the alignment of Local Area Energy Plans and distribution network planning.
Complication:
Current regional distribution network future energy scenarios are produced by electricity distribution networks. Gas distribution networks do not have an equivalent activity Accordingly regional and local area energy planning in not informed by a balanced consideration of all energy vectors.
Solution:
An agile and easy to use Whole Energy Systems Pathway (WESP) tool with detailed temporal and spatial investment planning capabilities to enable a regional whole energy system planning capability which informs gas network planning as well as inform national regional and local planners in an objective evidence based. way
Project Volta
This project will undertake testing on technology for distributed production of low carbon hydrogen from natural gas biogas or other short chain hydrocarbons from waste. Which uses 90% less electricity than electrolysis of water and with 68% lower total energy costs.
The project will support early movers and convert gas from our network into a low carbon hydrogen solution. The compact and modular deployment of the technology enables hydrogen production systems to be installed directly at the energy user's site. These systems convert grid-supplied natural gas to hydrogen on demand eliminating the need for additional infrastructure or on-site hydrogen storage and leaves the rest of the network unaffected
Project GaIN
As the UK attempts to decarbonise residential heat to meet net zero by 2050 electric heat pumps along with heat networks are expected to play a key role. However it is generally accepted that no one technology will be able to meet the needs of all households. If we are to deliver affordable low- carbon heating in the residential sector we shall need as wide a range of technology options as possible to overcome the economic and technical challenges facing every customer.
Project GaIN (Gathering Insights) will explore alternatives to heat pumps and heat networks which can utilise the robust gas network and benefit from its current upgrade programme supporting the aims of DESNZ’s decarbonisation of heat roadmap. The project will discover and assess additional technology options where alternative solutions might be more costly or difficult to deliver; this will include LAEP system benefits as well as localised CAPEX and OPEX costs.
Hybrid Heating | Project 10
The Cadent Hybrid Heating & Services Beyond the Meter (SBtM) project is a collaborative initiative between Cadent Gas and Guidehouse Europe aiming to trial a more integrated approach to delivering hybrid heating systems for vulnerable and fuel-poor households. The project seeks to bring together current approaches via schemes—such as Cadent’s own Services Beyond the Meter (SBtM) programme the Energy Company Obligation (ECO) and the Social Housing Decarbonisation Fund (SHDF)—into a single customer-focused pathway that combines appliance upgrades insulation heating system installations and tailored advice. Through a phased residential trial the project will coordinate the installation of hybrid heating technologies monitor impacts on customer bills and emissions and gather feedback from both consumers and industry stakeholders. The ultimate goal is to demonstrate the benefits of a joined-up approach to decarbonising home heating inform national policy and support Cadent’s role in achieving low-carbon heating targets while ensuring robust governance risk management and stakeholder engagement throughout the process.
Futures Close Heat Programme (FC Heat)
To reach our national net zero targets by 2050 we need to decarbonise approximately 25 million homes in England. Domestic heating accounts for approximately 14% of the UKs entire emissions and significant investment is required to improve the energy efficiency of our housing stock. In addition there are major challenges associated with domestic decarbonisation:
- England has the most diverse housing stock in the UK. with 35% built before the end of WWII.
- Sixty-four percent are owner-occupied and these homeowners need to have a good cost effective and efficient experience of home and heating upgrade as we move towards zero carbon homes.
- Implementing heating upgrades to this ageing housing stock requires a ‘whole house’ approach therefore consideration must be given to the building fabric and heating system.
Retrofitting existing homes with electric heating systems or deployment of green hydrogen boilers offer potential solutions however the intricacies of deployment and installation are complex further research and development is required to learn more about installation performance of various heating options. Doing so will inform future domestic decarbonisation strategies.
H2 Rail
This project will explore the feasibility of integrating hydrogen train refuelling infrastructure to support the development of a hydrogen rail network. This has particular relevance to our network as some of the UK’s hardest to electrify rail routes are situated in Wales and South West England. The project will focus on these hard to electrify routes exploring H2’s potential role in enabling their decarbonisation. If successful this project can help the WWU network to become a proving ground for real-world delivery of impactful H2 rail technology. It is expected to provide information which can be used in planning strategic hydrogen pipeline routes and network repurposing plans and support regional energy planning.
The Impact of District Heating on Our Network
This project will investigate the potential impacts of district heating on the gas network whether its viable for the network to support district heating and what repurposing would be required.
Asset Compatibility Assessment Tool for Transmission
Following completion of Phase 2 of the H21 Hydrogen Ready Components project this project will look to extend the methodology developed under this project to encompass the assessment of assets operating above 7 barg. The assessment tool will be incorporated into the LTS Futures blueprint methodology for repurposing existing Natural Gas transmission assets to hydrogen. The scope will include transmission assets above 7 barg and up to the maximum transmission pressure of 94 barg and will focus on the conversion to 100% hydrogen. Assets in scope will cover both above and below ground assets and include bends valves regulators slam shuts relief valves and pig traps. Assets excluded include pipelines compressors and cast iron components.
NTS Pipeline Assessments Phase 2
This project will build upon previous work to inform decisions relating to the repurposing of National Transmission System pipelines for 100% hydrogen and hydrogen-natural gas blends. New input data will be generated and collated the assessment methodology will be refined and an alternative assessment method probabilistic will be utilised and the resulting network impact will be considered.
This project will generate the following benefits:
- More accurate assessment of the capability of the NTS to transport 100% hydrogen and hydrogen-natural gas blends.
- Data on the impact of low percentage blend hydrogen on pipeline materials.
- Standardised document for Engineering Critical Assessments (ECA) of hydrogen and hydrogen-natural gas blend pipelines and pipework.
Greater understanding on the effect of hydrogen on the design and operation of pipeline systems.
Equations of State for Net Zero Gases
In metering applications Equations of State (EoS) are mathematical models that are used to convert measured volumes to standard units. This enables transfer from volume to mass allowing customers to be billed and for the networked to be balanced in energy. Metering and network balancing cannot be performed in volume as it doesn’t account for relative varying gas component concentrations – and therefore CV.
The EoS currently used (AGA8) is acceptable for up to 5% hydrogen but after this point it’s uncertainty is unknown – meaning the network may be unable to maintain accurate billing or system balancing. This project will obtain experimental data for a range of net zero gases and compare the output of several EoS for accuracy against real measured NTS-representative conditions.
Carbon Dioxide Repurposing procedure for the NTS
The project described covers the development of a new repurposing process for NTS assets to transport gaseous phase carbon dioxide. The approach for repurposing the National Gas Transmission System (NTS) to transport carbon dioxide will need an innovative approach to meet the timelines for the net zero transition. There have been several projects undertaken to date to determine the interactions of carbon dioxide with the network assets. We are looking to determine if these activities are providing all the relevant data and evidence required for our network to transition.
Hydrogen Impact on NTS Welds
Laboratory and full-scale testing have demonstrated that hydrogen gas affects the fracture performance of pipeline steel welds. To avoid severe knockdown factors stipulated by existing hydrogen pipeline codes mechanical property data from welds tested in high-pressure gaseous hydrogen is required to enable optimised operation of the NTS in hydrogen.
National Gas Transmission have conducted a series of fracture toughness and fatigue crack growth rate tests on a wide selection of pipeline steels and welds representative of those used on the National Transmission System (NTS). A thorough review of the welds tested and how these compare to the wider population of welds in service on the NTS is required to provide further confidence to use this data in pipeline repurposing assessments and for new build design.
Hydrogen & Carbon Dryness Management
This Network Innovation Allowance (NIA) project investigated dew point management in hydrogen/natural gas blends pure hydrogen and carbon dioxide transmission pipelines. In the National Transmission System (NTS) which is currently a natural gas network the purity of the gas is carefully controlled via the network entry specification. Trace components such as water nitrogen oxides sulphur containing compounds oxygen and carbon dioxide have strict limits on their allowable levels in the network. This is done in part to ensure the gas delivered to end users meets the requirements of the customer but also to protect transport and storage systems. Purity specifications are being developed for hydrogen its blends with natural gas and for carbon dioxide (CO2). This project focused specifically on the water content within these gases in what concentrations it is likely to be acceptable the conditions at which it may condense in the network its interactions with other trace components and contaminants and the potential detrimental effect on the network.
Limiting moisture content and ensuring gas dryness is important for several reasons:
- Safety & Efficiency: Hydrogen’s efficiency as a fuel can be compromised by moisture. Water in hydrogen can affect the combustion process leading to a reduced efficiency for applications like gas turbines.
- Corrosion: If dew points aren’t controlled effectively liquid can drop out of the gas phase and this moisture can cause corrosion in pipelines and hydrogen embrittlement. For CO2 pipelines this moisture can react to produce carbonic acid which can further corrode the pipelines.
The outcomes of the project should provide a clearer insight and strategy on how to effectively manage hydrogen and carbon dryness within the NTS ensuring that the gas remains within the required specifications for current and future demands.
The project was split into three work packages (WP):
WP1 focused on hydrogen and its blends initially reviewing the equations of state (EoS) that model the dew point temperature at varying water content and hydrogen/methane blend ratios. The impact on the network of liquid water formation in hydrogen was examined including the interaction with other trace components such as CO2 and H2S in particular the effect on welds and pipeline defects. Finally a summary of international standards for hydrogen purity highlighted the likely water content limits that could be expected by hydrogen users and thus provided by producers.
WP2 focused on CO2 its phase behaviour and the effect impurities have on this behaviour using the most appropriate equations of state. The detrimental effect of CO2 and liquid water contained within it on pipelines fittings and other parts of the network was reviewed.
WP3 focused on how the water content specifications could be managed on the network from the point of view of monitoring and controlling water dew point in the gases. The water content expected from various production techniques were reviewed and a high-level costing for the dehydration process for both CO2 and hydrogen was made.
Augmented Reality Futures Close
Augmented Reality (AR) technology will be used at Futures Close to convey and inform various audiences including vulnerable consumers about various property archetypes their construction heat loss and the type of retrofit solutions (heating systems controls fabric improvements) available to improve the level of domestic energy efficiency. AR will be used to inform educate and engage audiences on-site at Futures Close as well as off-site at conferences and meetings avoiding the need to facilitate multiple visits on site. Live data feeds will also be visualised illustrating room-by-room temperature humidity as well as other metrics providing an engaging interactive and informative asset for Futures Close.
Hydrogen AGI Pipework Integrity Monitoring Phase 2
This project proposes a structured approach to assess the integrity of AGI pipework for hydrogen service. It includes development of a screening tool based on representative AGI archetypes execution of ECAs to define flaw tolerances and inspection intervals and evaluation of NDT capabilities with respect to desired AGI performances. The project also reviews integrity management software to support increased digitalisation and monitors emerging technologies for hydrogen-related NDT developments.
High Pressure Venting and Flaring Demonstration for Net-Zero Gases Transportation
National Gas Transmission (NGT) own and operate the UK’s National Transmission System (NTS) transporting natural gas from terminals to end users. NGT have ambitions to repurpose the existing to transport hydrogen and hydrogen blends. Understanding the impact of hydrogen on our existing assets is a key enabler for this.
This project will conduct design of flare for hydrogen and its blends and vent system for hydrogen its blends and carbon dioxide and offline physical testing to provide evidence that hydrogen / hydrogen blends could be flared and vented safely and environmentally in for NTS.
Simplifying Low Carbon Heat
The study will identify the significant technical fiscal and political challenges current heat decarbonisation strategy faces and outline an alternative approach involving greater use of hybrid devices that offers both lower consumer costs and greater potential to cut carbon emissions than projected based on current policy and consumer behaviour. Arguments will be presented through four linked pieces of analysis:
- An examination of the costs of the Government’s Clean Heat Market Mechanism (a key policy intervention to promote heat pumps in the appliance market).
- An approximation of the additional network upgrade requirement early transfers to heat pumps represent in comparison to hybrids.
- A view on what extending the Green Gas Levy beyond its current cut-off date could do to the emissions intensity of the gas distribution network (by encouraging more biomethane production).
- Voter polling that analyses their view on different approaches to heat decarbonisation.
The paper will include a series of policy recommendations for government to take forward in order to enhance progress on decarbonisation of domestic heat.
Deblending Rollout Strategy Phase 2
National Gas Transmission (NGT) are committed to reducing emissions from the operation of the National Transmission System (NTS) and eliminating emissions by 2050. The transition to hydrogen provides an opportunity to reduce carbon and utilise the network for hydrogen refuelling for transport. The HyNTS Deblending for Hydrogen Transport project has involved the development of a UK-wide rollout strategy from ERM that lays out demand clustering and potential locations for deblending supplied refuelling for transportation mapped against the NTS.
The project will aims to obtain further information on NRMM maritime cars LGVs and mobile power to fully understand the hydrogen demand. It will also review the existing rollout strategy to ensure it is accurate and full captures the current hydrogen market given the changes in this landscape
Network Policies and Procedures – Development Roadmap
UK gas networks are managed and maintained using an extensive suite of policies policies standards and procedures. These documents have been developed gradually over decades of gas network operation however the transition to hydrogen necessitates a wholesale review and update of all existing documents. There is much commonality between the networks’ documents and therefore it would be most efficient to update these documents in a coordinated way to avoid the unnecessary duplication of effort.
1 mol% Oxygen exemption for the NTS
This study builds on previous technical work undertaken to support the 1 mol% oxygen Gas Safety Management Regulations (GSMR) amendment up to 38 barg. The work plan was targeted to focus on aspects that are more pertinent to the National Transmission System (NTS) including information from the current developments for European standards and supporting information from published studies on the impact of oxygen. The scope covered:
- Integrity – focusing on changes to corrosion rates and developing the understanding that increased oxygen content may have on the different factors that impact on corrosion rates.
- Measurement – considering the effect of higher oxygen content on the ability of the different analysers and equipment to measure accurately.
- Gas quality – reviewing the impact on key gas quality parameters and considering the potential impact on trace components that may be present.
- Pipeline “dryness” – investigating the impact of water dew point and water content and the effect of increased oxygen.
- Gas mixing – recognising that the flow from biomethane injection will in most cases be lower than the main pipeline flow deduce if higher oxygen content gas could be transported long distances through the pipeline network.
- Gas storage – building on available information to assess if higher oxygen content impacts on gas storage.
- Gas utilisation – identifying if there are end users that could be significantly impacted by elevated oxygen limits.
- Intermediate limits – considering if an intermediate limit would be preferential.
The scope was developed to provide technical evidence to understand the implications for the NTS recognising that this introduces additional factors that were not considered in the previous studies.
Air Ingress in Multi Occupancy Buildings (MOBs)
This project will help to inform UK Gas Distribution Network Operators (GDNOs) and wider industry on the impact of the potential for air ingress into gas-conveying pipework in MOBs. The mechanisms for air ingress into gas-conveying pipework have been shown to be gas agnostic though this project will focus on impacts specific to future hydrogen distribution to MOBs.
Air Ingress in Commercial Installations
This project investigates the risk of air ingress in medium to large commercial gas installations particularly in the context of hydrogen transition. It builds on previous domestic-focused research and aims to understand whether similar risks and mitigation strategies apply to commercial systems. The project includes technical and behavioural assessments experimental testing analytical modelling and the identification of mitigation measures.
Pre-heating Requirement for Hydrogen Transportation
Net Zero Multi-Vector Assessment
This project will help Cadent to understand considerations for a Net Zero Multi-Vector at a town scale to inform future activity on preparation for repurposing. An area will be chosen which is representative of different networks housing stock and demographics which will require different approaches and engagement.
Fairer Warmth Hub
The Fairer Warmth Hub (FWH) connects stakeholders of the Net Zero Transition through place-based strategies providing tools and guidance to facilitate local energy plans and enhance collaboration. The FWH integrates digital tools and community engagement to facilitate effective communication and planning among diverse stakeholders including households small businesses schools social healthcare and local authorities. FWH is designed to bridge the gap in the energy transition by providing tailored support to these stakeholders ensuring that the transition is inclusive and just. The FWH integrates three core elements:
- Trained ‘Champions’ – Volunteers or staff known as Champions are recruited and trained to support community engagement helping to build trust and reduce miscommunication in local energy initiatives.
- Digital Tools (Virtual Assets) – Innovative digital tools (App + Website) and resources are used to facilitate energy transition planning and community engagement particularly assisting Customer In Vulnerable Situation (CIVS) and those who are digitally excluded.
- Community Centres (Non-Virtual Assets) – Physical community hubs serve as accessible locations for hands-on support providing a space for CIVS and other stakeholders to engage directly in the energy transition.
Innovative approach to Policy document management
As part of National Gas’s Three Molecule strategy the technical evidence for the transportation of hydrogen and carbon dioxide through the National Transmission system is being gathered through the HyNTS and CO2 programmes. This technical evidence will feed into the updates of NGT’s suite of policies and procedures which are used to demonstrate compliance with the Gas Safety (Management) Regulations (GSMR) Pipeline Safety Regulations (PSR) and Pressure System Safety Regulations (PSSR).
This project will develop the approaches to compliance with regulations for hydrogen hydrogen blends and CO2 considering both new build and repurposed assets. The project will also define how the NTS Safety Case of the future will look including modular design and digitalisation to streamline access to information.
Pipeline Installation Techniques for Net Zero
NGT is committed to supporting the government and the broader industry in achieving the Net Zero target by 2050. CCUS alongside hydrogen will play a critical role in reaching this goal. Since the existing infrastructure was originally designed for methane adapting it to transport these new gases presents significant engineering challenges. To address this an extensive research program has been launched to assess the technical feasibility of repurposing sections of the NTS for hydrogen and carbon dioxide transportation. While repurposing existing pipelines will be an essential part of the transition it will not be sufficient new infrastructure will be required to support a scalable hydrogen and carbon network. Given the ambitious deployment timelines meeting these targets will require not only innovative technical solutions but also a holistic strategy that integrates the supply chain and fosters collaboration across the industry.
Hydrogen backbone social economic assessment
Develop credible and independently modelled pathways to test the economic case of developing a H2 Backbone and prepare NGT for dialogue with NESO DESNZ HMT and a wider group of stakeholders.
Biomethane feedstock mapping and strategic growth planning study
This project constitutes a GB-wide analysis of biomethane feedstock arisings including location determination of quality and composition of each feedstock type and biomethane production potential. Arisings will be quantified to county-level. Mapping software will be used to determine feedstock hotspots and alignment with the grid will be considered. The results of these analyses will be combined to consider how and where sustainable biomethane growth can best be achieved.
Predictive Tool for Unaccounted-For Gas (UAG) Identification
The Unaccounted-for Gas (UAG) project aims to develop a predictive tool that identifies and quantifies UAG across the National Transmission System (NTS). Leveraging 12-18 months of SCADA data the tool will simulate gas flow and metering behaviour to pinpoint anomalies and reduce losses. UAG currently represents significant financial cost to the consumer; even a 1% reduction could yield practical savings. The project aligns with RIIO-2 NIA criteria and supports regulatory compliance under Special Condition 5.6. It builds on prior research and integrates learnings from international benchmarks. The initiative will enhance operational efficiency improve data transparency and support long-term decarbonisation goals through better system visibility and control.
HyNTS Corrosion
The National Transmission System (NTS) pipelines employ a number of external corrosion barrier coatings primarily coal tar enamel and fusion bonded epoxy (FBE). Cathodic protection is deployed on the network to mitigate for coating failure. Additionally there are a range of pipeline steels that are used in both above ground buried pipework both stainless and carbon steels of various grades.
Following the previous NIA project: Research the Impact of Hydrogen on CP & Degradation of Coatings (NIA NGGT0191) the HSE have recommended follow-on testing to fully explore the impact of hydrogen permeation through steel pipelines on corrosion protection systems.
Additionally the impact of hydrogen on all credible pipeline corrosion mechanisms is to be considered to understand whether current assumptions with regards corrosion rates are valid for hydrogen pipelines.
Predictive Model for Flood Risk Management
This project will develop and evaluate a predictive flood monitoring system for Above Ground Installations (AGIs) and pipeline assets using real-time sensor data and 48-hour surface water forecasting. The system will be deployed at four locations identified through a nationwide flood risk survey. The trial will assess the system’s accuracy responsiveness and operational value across diverse environments. The project supports climate adaptation regulatory compliance and asset resilience by enabling early warning and proactive intervention. It aligns with RIIO-2 NIA objectives by reducing flood-related disruption enhancing safety and informing future investment decisions. The project will conclude with a technical report and recommendations for wider rollout under RIIO-3.
Hydrogen Environment Testing of Girth Welds Phase 2 - Constant Load Testing
Previous testing carried out under NIA has outstanding gaps that require further testing to close. Completing the additional testing will confirm actual fracture toughness values to be used and the corresponding J value from the crack growth resistance curve. The project outputs are required and will be used to progress design specification and procurement processes for hydrogen major projects. The results can also be applied for repurposing assessments.
Unlocking the role of nuclear in low carbon hydrogen and heat
This project constitutes a research study which will explore how nuclear energy can support a whole system energy transition by providing for the energy requirements of low-carbon hydrogen and heat networks within regions where renewable energy potential is relatively low. These are areas where hydrogen demand will need to be met by imports unless hydrogen production methods can be increased and diversified.
Recompression Solutions for a Net Zero NTS
This project will provide National Gas Transmission (NGT) with a clear technical understanding and strategy for the deployment of recompression solutions for Net Zero gas networks including hydrogen blends 100% hydrogen and Carbon Dioxide transmission.
The NIA Safe Venting & Recompression of Hydrogen innovation project explored the possibility of repurposing natural gas recompression units for hydrogen blends and 100% hydrogen and investigated new solutions for hydrogen pipeline recompression as part of routine maintenance activities.
This project will take further NGT’s knowledge of hydrogen recompression for different scales and applications on the NTS to reduce venting and explore similar solutions for carbon dioxide pipelines.
WWU Intermediate Scale Hydrogen Storage Evaluation (HyWISE)
As the hydrogen economy grows the need for flexible decentralised intermediate-scale hydrogen storage is becoming increasingly evident. While large-scale underground hydrogen storage in salt caverns and depleted gas fields will play a crucial role in long-term energy security distributed intermediate scale storage solutions are essential to bridge the gap between production and end-use ensuring reliability efficiency and resilience in hydrogen supply chains during the scale-up of the hydrogen economy. Decentralised storage facilities allow for hydrogen hubs to emerge in urban and industrial areas reducing reliance on long-distance transport infrastructure and supporting regional hydrogen economies.
A key unknown is whether the land use and geology of Wales and South West England can support intermediate-scale underground hydrogen storage (UHS) technologies. This project aims to map and assess potential storage sites within the WWU region aligning with broader energy infrastructure plans—including hydrogen and gas pipelines electricity networks industrial demand and renewable energy integration. The project will use WWU’s geology and geography as a case study and demonstrate how UHS options can support wider energy infrastructure in the region and beyond as well as future project plans. For this reason the outputs are expected to be of value to all networks.
To evaluate the feasibility of these storage solutions the University of Edinburgh will analyse rock property and strength data from publicly accessible British Geological Survey (BGS) datasets developing new insights into the engineering suitability of the region’s subsurface for hydrogen storage.
Hydrogen Refuelling from the Network
Wales & West Utilities (WWU) is undertaking a project to develop a thorough understanding of the technical and economic requirements for integrating hydrogen refuelling stations (HRS) into the existing gas network. The main aim is to enable the supply of ‘on-spec’ hydrogen for fuel cell electric vehicles (FCEVs) and hydrogen internal combustion engines (HICEs) from the heat-grade hydrogen currently delivered by the network. This involves analysing the types of contaminants present in grid hydrogen pinpointing the purification technologies needed and assessing the infrastructure requirements for compression chilling and storage to deliver hydrogen at the target pressures of 350 and 700 bar.
Hydrogen Fuel Cell Operating Hub for Repex/Large-Scale Projects
To maintain their above ground and underground pipework assets all Gas Distribution Networks (GDN) operate substantial fleets of commercial vehicles (primarily vans but also HGVs) together with mobile plant and powered equipment. Presently there is a complete reliance on hydrocarbon fuels primarily diesel and petrol. Both fuel types are usually sourced via the public retail forecourt network. Similar issues exist for other utility providers that operate underground and overground infrastructure.
Wales & West Utilities is undertaking a major programme of change to support decarbonisation and deliver a hydrogen-ready Net Zero gas network. Our distribution network iron mains replacement programme (Repex) requires significant excavation and pipe replacement activity laying long-life hydrogen-ready polyethylene pipe by a variety of means.
The project endeavours to identify a suite of suitable zero-emission mobile plant assets tools and equipment for carrying out Repex work that WWU could hire or purchase for operational trials and to identify opportunities for changing equipment items to simplify recharging/refuelling requirements in the future.
The objectives of this project are:
- To analyse current energy demands sound pressure and vibration levels associated with existing ICE powered mobile plant assets ICE-powered tools and equipment and electrical equipment used for carrying out planned iron mains replacement work on the gas distribution network.
- To estimate the future electrical energy demands (and sound pressure and vibration levels) placed by future zero-emission powered tools and equipment on a zero-emission site-based power generation facility.
- To identify opportunities for changing equipment items to simplify recharging/refuelling requirements in future.
- To identify a suite of suitable zero-emission mobile plant assets tools and equipment that WWU could hire (or purchase) and utilise for operational trials short and longer term. This will include the energy source and the means of recharging and/or refuelling on site and/or at regional depot locations.
Economics of Biomethane
The consultant will deliver a report with supporting data to demonstrate that the economics stack up for biomethane while also supporting the UK’s net zero ambitions and contributing to our energy security.
Calorific Gas Sensor
The UK and Irish gas networks are undergoing a major transition to support the integration of green gases including biomethane and hydrogen. A significant challenge is the inability of the current gas billing infrastructure based on flow-weighted average calorific value (CV) measurements taken at National Transmission System (NTS) offtakes to accurately reflect the gas composition received by consumers—particularly with the increasing number of decentralised injection points. This discrepancy presents a technical and regulatory hurdle to achieving fair and transparent billing.
This programme is leveraging 3 suppliers to develop a range of novel calorific value sensors that will enable calorific value to be accurately measured at different points on the network without the need for venting.
The programme comprises of 3 individual projects which will develop each suppliers’ technology up to a sufficiently high TRL where the sensors are ready to be trialled in the field. Each supplier will be delivering their own scope of work but will be expected to share a reasonable amount of information with each other in order to ensure maximum value is obtained from this programme. The innovators will not be expected to disclose any information that could provide them with a competitive advantage over the other solutions
MASiP Phase 3 (Qualification Testing & Integrated System Development)
The MASiP Phase 3 project aims to develop test and qualify a new pipeline system (MASiP) as a safe and cost-effective alternative to traditional steel pipelines for pipelines operating above 7 bar capable of transporting natural gas biogas and up to 100% hydrogen. Building on Phases 1 and 2 this phase focuses on the technical assessment of tight radius bends tees and damage repair as well as the integration of live monitoring systems in a prototype operational environment. Comprehensive validation will include connectors coatings repair systems hot-tapping solutions ground movement tolerance durability and design life testing. All testing will be carried out in accordance with IGEM API and ASME standards supported by statistical and independently witnessed trials to generate robust qualification data for industry adoption. The key deliverable is a validated deployable hydrogen-ready pipeline system that is safe compliant and cost-effective offering potential cost savings of up to 50% compared with steel. The project outcomes will support the UK’s RIIO-GD2 strategy and 2050 net-zero targets by enabling hydrogen-ready infrastructure improving monitoring installation efficiency and long-term reliability while also providing the evidence base required for regulatory policy and industry acceptance of alternative pipeline materials.
Variable Blends Operational
Blending hydrogen and natural gas into the NTS has some clear benefits for supporting the transition of the energy industry in the UK to net zero in 2050 and is seen as an important intermediary step towards that goal.
It is expected that initially a low percentage hydrogen blend will be accepted onto the National Transmission System with this potentially increasing up to 20% hydrogen blends being accepted. However whether a hydrogen producer has to put in a specific blend percentage has not been determined and is unlikely. Therefore NGT need to develop the system to be able to effectively manage variable blends in addition to 2% 5% and 20% hydrogen blends.
This project will look into 4 key areas that might be directly impacted by hydrogen blend variability and require impact and risk assessments followed by investigations resulting in solution mapping and mitigation strategies being proposed. The key topics include establishing permissible limits for variability investigating how to manage interconnection from NTS to other countries understanding the effects of variability on stratification potential in the network and investigating the effects of variability on combustor/compression modelling.
HyNTS Operational Methodologies - Valve Performance Assessments
This project aims to assess and enhance the hydrogen readiness of ball valves within the (NTS) by conducting maintenance strategy evaluation with material performance analysis. It involves reviewing current valve operations diagnostics and OEM maintenance guidance alongside a literature review of commonly used valve materials to understand their behaviour under hydrogen exposure. The project valve performance testing and finite element analysis of existing valve designs to evaluate structural integrity. Findings from these activities will provide actionable recommendations for updating NGT’s valves maintenance strategies diagnostic tools and design standards to support safe and efficient hydrogen service deployment
HyNTS Operational: Qualification of Pressure Vessels
The National Transmission System (NTS) uses dry scrubbers filters and strainers to remove contaminants in the gas stream. Introducing hydrogen raises new challenges due to its distinct properties which could affect the performance and efficiency of these existing cleaning assets. We completed a project that investigated the compatibility of these assets with hydrogen and hydrogen blends to ensure gas quality without compromising the safety or efficiency. An outcome was to get a deeper understanding of the fracture and fatigue behaviours of these equipment to better understand whether hydrogen will impact the material properties. This assessment will undertake a targeted CTR analysis to inform a future potential physical test programme.
Gas Inhibitors for Hydrogen Pipelines - Phase 3
The Phase 3 project on gas inhibitors for hydrogen pipelines aims to translate lab-scale findings into practical applications for the UK’s National Transmission System. It focuses on validating the effectiveness of oxygen and alternative inhibitors in mitigating hydrogen embrittlement addressing unresolved safety and integrity concerns from previous phases and designing a plan for safe integration into existing infrastructure. The project includes physical demonstration planning and network design to assess technology implementation.
Novel Unified Viewer for NGT Network Performance Twin
As part of the National Gas Network Performance Twin program this project is designed to demonstrate a scalable digital twin platform focused on improving infrastructure resilience supporting hydrogen integration and addressing climate adaptation across the National Transmission System (NTS). This initiative integrates three strategic components: Collaborative Visual Data Twin (CVDT) – a 3D BIM-based digital twin platform that visualises and monitors asset performance in real time. HyNTS Dataset Automation – a structured automated geodatabase that supports hydrogen readiness assessments and asset integrity modelling. Flood Twin – a predictive flood simulation model that enables scenario-based risk analysis and resilience planning for Above Ground Installations (AGIs).
Girth Weld Inspection of Steel Pipelines for Repurposing to Hydrogen Service
Repurposing of natural gas pipelines made of carbon steel for use with hydrogen blends requires a fitness-for-service analysis as part of the hydrogen use safety case. Girth welds of an unknown quality exist in the Local Transmission System (LTS). In hydrogen service these welds would have a greater susceptibility to fracture failure due to material embrittlement caused by interaction of steel material with hydrogen.
Current in-line inspection methods do not routinely inspect girth welds for defects. This project aims to test the available technology for its capability to detect defects and cracks in girth welds. This will provide valuable data for engineering critical assessments required to repurpose natural gas pipelines. It will also inform about the state of art inspection techniques and whether they can be used as a tool for repurposing pipelines.
Hydrogen Combustion Engine Feasibility Study
This project will see Cenex deliver a feasibility study on hydrogen internal combustion engines (H2ICE) as an alternative to diesel and Fuel Cell Electric Vehicle (FCEV) within WWU’s operational fleet. This project comprises three distinct work packages (WPs) each feeding into a holistic assessment of H2ICE applicability across WWU’s vehicle assets. Cenex will apply its expertise in fleet decarbonisation alternative fuel technologies legislative policy analysis and techno-economic modelling to meet WWU’s scope requirements. All outputs will be suitable for internal strategic review and for sharing externally with partners and stakeholders.
Blending Management Approach – Phase 2
The conversion of the National Transmission System into a hydrogen transmission network has been widely discussed and it is recognised that blending of hydrogen and natural gas in the network is an important intermediary step towards that goal. It is therefore important to understand how the NTS will operate with a mix of natural gas and variable blends up to 20% hydrogen.
The Blending Management Approach (BMA) Phase 2 project will explore the operational safety and strategic implications of introducing low-level hydrogen blends into the National Transmission System (NTS) with a particular focus on storage interactions emergency response scenarios and long-term network management strategies. This phase aims to deepen understanding of how hydrogen blends interact with existing infrastructure and protocols.
Scaling Hydrogen with Nuclear Energy (SHyNE)
Significant efforts are required to support the transition of our energy systems moving away from carbon-intensive fuels such as coal diesel petrol and gas towards cleaner sources of power generation such as wind solar nuclear and hydrogen. There is a potential for hydrogen to play a hugely significant role in our energy system the extent of which will be driven by a range of factors including the ability to transport it to where it is needed. There have been recent positive decisions for hydrogen’s potential uses in blending transportation domestic heating and industry. To produce sufficient hydrogen to meet this potential need it will be important to increase and diversify hydrogen production methods.
As nuclear is a reliable and consistent source of clean energy that is unaffected by external factors such as the weather Northern Gas Networks and Wales and West Utilities would like to investigate the possible use of nuclear power as a method of delivering the future increased demand in hydrogen production. This project will explore the opportunity for hydrogen production from nuclear to support a net zero transition across the gas network.
Benefits of nuclear-enabled hydrogen (NEH) in the context of gas distribution networks (GDNs) will be explored building on the established benefits of nuclear energy production.
The overall project outcome is that NGN WWU and other stakeholders are sufficiently informed to determine whether further investment and integration of nuclear-enabled hydrogen to transition plans are justified and how a potential first project could take its next step to deployment through securing technology licences sites off takers and financing.
Risk of Microbial Corrosion due to Hydrogen Transportation
National gas pipeline systems rely heavily on protective coatings and cathodic protection to prevent corrosion and ensure long-term integrity. Coatings act as the primary barrier against environmental exposure while cathodic protection—typically using sacrificial anodes or impressed current systems—supplements this by mitigating electrochemical reactions that cause metal degradation. The introduction of hydrogen into these pipelines as part of decarbonization efforts presents new challenges. Hydrogen can permeate coatings and accelerate corrosion processes especially in the presence of certain microbes. Microbiologically induced corrosion (MIC) driven by bacteria such as sulphate-reducing bacteria (SRB) can be exacerbated by hydrogen which some microbes use as an energy source. This interaction may compromise both the coating and cathodic protection systems necessitating advanced materials and monitoring strategies to maintain pipeline safety and performance in a hydrogen-integrated future.
Maximising the use of a decommissioned network
This project constitutes a research study exploring innovative opportunities to repurpose decommissioned gas pipelines and associated assets to support future energy systems and critical infrastructure needs.
By exploring diverse repurposing options beyond hydrogen and carbon dioxide it is hoped that it will be possible to identify potential growth areas for gas pipeline assets that in some areas may otherwise become stranded. The study will include a review of economic viability technical feasibility and regulatory considerations for any identified options.
Sustainable Vehicle Transport
The Sustainable Vehicle Transport (SVT) feasibility study project will undertake a green gas refuelling study specific to SGN’s network areas in Scotland and Southern incorporating biomethane in the form of bio-CNG and the potential for a future hydrogen option. Along with heat transport is a key sector to decarbonise on the journey to net zero. Battery electric vehicles are well suited to small vehicles but for heavy goods vehicles (HGV) and larger commercial vehicles (LCV) like the type that make up the majority of SGN’s operational fleet this may not be the most appropriate technology given the range and on-board power requirements.
Impact of Hydrogen and on NTS Oils & Greases – Phase 2
Phase 1 of the project compiled a list of oils and greases considered to be gas-facing on the NTS along with identifying functional and material property requirements of these products. Proposed standards and testing methodologies were also outlined to inform the next phase of the project. In Phase 2 the project will proceed with additional required activities to ensure the safe utilisation of NTS oils/greases in a hydrogen pressurised environment. These activities include laboratory testing for lubricants and functional testing for sealants to assess degradation and performance of these products in hydrogen. Subsequently requirements for in-service monitoring will be identified.
Hydrogen Ignition Risk from Static and Autoignition (HIRSA) – Stage 3
The HIRSA programme is assessing ignition risks for the transition to hydrogen with Stage 3 focusing on high pressure static risks including shockwave ignition and rapid adiabatic compression. This research supports the safe integration of hydrogen into gas networks.
Development of Technical Readiness for Bends and Tees
Hydrogen design codes require fracture mechanics based design and qualification for high stress service. Procurement of a number of Long Lead Items (LLI) is required to construct commission and operate hydrogen networks. A number of these LLIs including induction bends and barred tees remain at a low technical readiness.
This project will carry out fracture toughness testing in a hydrogen environment to increase the technical readiness support the supply chain and achieve operational schedules.
High-Pressure Materials Analysis (HPMA)
This project will identify and evaluate current technology available for pipes suitable for use in natural gas blended gas and hydrogen gas networks operating above 7 bar.
This project will see QEM Solutions conduct a comprehensive literature review of market reports on pipes used in high-pressure gas systems as well as of existing options for transportation of high-pressure gas in industrial uses with transferrable learnings. QEMS will develop a matrix comparing pros and cons of each solution and consolidate the findings into a final project report.
The project will facilitate the energy system transition by investigating the available and most optimal pipeline materials for natural gas blended gas and hydrogen gas networks above 7 bar considering all operational capex requirements and full lifecycle costs. This work is important for informing investment decisions in pipeline replacement materials addressing a gap in current knowledge.
Alt Pipe
As the owner of the National Transmission System (NTS) National Gas is committed to responsibly managing our redundant assets in a manner that contributes to a sustainable lower-carbon future by decommissioning them responsibly refurbishing for re-use where viable and/or or changing their purpose where possible. This discovery project will identify decommissioned elements of redundant pipework on the transmission system which are unlikely to be used for refurbishment or part of any wider repurposing of the core network and explore the potential of repurposing these for alternative uses including the storage and/or transmission of electrical energy heat fuels water and data.
Gas transmission asset resilience through network transitions Discovery
As the energy system transitions away from unabated natural gas and parts of the gas network are either decommissioned or repurposed to support the UK’s net zero goals there is an increased risk of unintentional third-party damage to the network. Any supply interruptions to the transmission network would directly impact security of supply across the country and have a significant cost to customers including power generators industry and domestic users. This project will investigate the benefits of moving from expensive low frequency manual network inspections to innovative AI assisted surveillance technologies in combination with satellite imagery and drones.
INNOVATIVE MONITORING AND CONTROL OF PIPELINE CONSTRUCTION
Cadent proposes to trial “Digital Inspector” (DI) an innovative platform that enhances real-time control inspection and recording of pipeline construction activities. Digital Inspector provides verifiable evidence of weld quality supervises critical parameters live during construction and generates a complete digital record for asset integrity.
This project will trial Digital Inspector across multiple Cadent construction projects in 2025/26 working closely with Cadent’s contractors to assess practical usability contractor acceptance and the impact on existing BAU processes.
Maximising Capacity at Biomethane Sites
This project will develop network and/or entry site solutions that will enable biomethane supply to meet the swings in demand through the year.
Asset Cortex – Generative AI for asset hierarchy
The Asset Cortex project is a Generative AI initiative by National Gas Transmission (NGT) aimed at transforming its legacy 4-level asset hierarchy into a deeper ISO 14224-compliant structure. This Proof of Concept (PoC) will explore the feasibility of using AI to infer component-level details from system-level data such as pressure and age enabling automated hierarchy generation. The project supports RIIO-GT3 objectives including predictive maintenance digital twin creation and improved asset lifecycle visibility. It will also enhance integration with systems like SAP and Copperleaf and streamline field force operations. Key phases include requirements capture data mapping AI model development benchmarking against manually collected data and final reporting. Grasby Bottom and Hatton Multi Junction sites will serve as testbeds. The project is expected to reduce manual effort improve scalability and lay the foundation for broader digital transformation. It will also inform IT infrastructure needs and data governance strategies. While the current phase focuses on feasibility successful validation could lead to full-scale deployment supporting NGT’s strategic goals around automation cost efficiency and sustainability. Asset Cortex is positioned as a foundational enabler for future infrastructure planning and operational excellence across the gas network.
H100 Barhole Trials for Hydrogen Network Operations
This project will focus on barholing operations conducted after an emergency gas escape within the H100 Fife Distribution Network Operations. The scope will consider H100 scenarios specifically the establishment of a new distribution network to deliver Hydrogen to selected properties in the conversion area. The minimum pressure for the H100 Fife Distribution network is 27 mbar and the maximum pressure is 75 mbar. The aim of this project is to provide further evidence to support SGN operations on the H100 distribution network during emergencies and any future trials or broader rollouts of Hydrogen.
Steer Energy has been identified as a suitable contractor for executing this project due to their extensive expertise in this field and their previous work on the Barhole Trials and ITL Haldane Drill Isolator project. Steer has a proven partnership with SGN and the wider gas industry offering a variety of services including experimental lab testing training and testing facilities.
Reducing Green Gas Costs Through BioCO2 Sequestration
The work will develop a pathway for the biomethane sector to monetise CO2 and identify the role the gas networks can play reducing the long-term cost of gas decarbonisation.
Hydrogen Permeation through the Oxide Layer - Phase 2
This project aims to address major gaps identified in NIA2_SGN0078 which conducted a thorough literature review of the international scientific and industry knowledge base. The work will focus on characterising the hydrogen permeability rate of API Grades X52 and X60 vintage pipelines and welds by analysing the microstructure of each sample investigating the impact of internal corrosion layers and conducting mechanical testing post-exposure.
A correlation exercise will also be conducted to equate gaseous charging with electrochemical charging. The outcome of this work targets an improved industry best-practice for permeation and fracture toughness tests providing a validated benchmark framework with the potential to inform future updates of industry standards and procedures and saving costs on any future material and permeation testing work.
Development of Technical Readiness for Large Diameter Ball Valves
In order to construct commission and operate new hydrogen pipelines and installations safely and as part of modifications to existing assets for repurposing ball valves are required to carry out isolations. Selected ball valves need to have been proven to be suitable for service in large diameter high pressure hydrogen networks.
This project will carry out performance validation testing on a 32″ ball valve to confirm suitability to operate in high pressure hydrogen networks.
Hydrogen Blending: Direct Injection Feasibility Study
This project has been initiated to assess the technical and commercial feasibility of direct hydrogen injection into the gas distribution network at 5% and 20% by volume. It supports the broader Market Frameworks appraisal by providing the evidence needed to evaluate whether both System Entry Models direct injection and pre-blending are feasible under varying network conditions.
The need for this study was identified through the Hydrogen Blending Implementation Plan which outlined two technical approaches for hydrogen connections: injecting hydrogen directly into the network or pre-blending it before entry each with distinct technical and commercial implications. While National Gas has assessed both models for the transmission network a gap analysis revealed that these findings are not directly transferable to the distribution network.
Evidence for pre-blending was previously completed as part of HyDeploy and the Hydrogen Blending Functional Specification project. It was shown that this approach provides more controlled mixing but may require more complex infrastructure leading to higher costs for the producer. Although it is assumed Direct Injection may be achievable at lower cost there are multiple key technical challenges associated with the technique such as the potential for inadequate hydrogen mixing which could result in non-compliant gas safety concerns including material integrity and operational constraints e.g. GSMR exclusion zones.
Through literature review CFD modelling engineering assessments and commercial analysis the study will evaluate the technical and safety performance risks and cost implications of direct injection across a range of scenarios and configurations.
The Role of Gas Distribution Networks in Power Generation
This project will assess the current and future role of gas distribution networks (GDNs) in supporting dispatchable electricity generation within a decarbonising UK energy system. It will identify method(s) for GDN operators to obtain accurate gas usage data from existing generation connections and develop future scenarios to inform network planning and investment.
Clean Power Flexibility Investigation
Clean Power 2030 (CP2030) aims for a fully decarbonised electricity system using unabated gas only as backup. This introduces an important challenge: how can the gas transmission network remain viable and deliver flexibility during extreme demand events despite not being utilised most of the time? This project aims to understand how to sustain the gas network technically and economically in a low average high peak demand future focusing on the interaction between gas and electricity systems.
Gas Transmission Data Sharing Infrastructure
This project will entail a feasibility study to assess the viability of developing a secure scalable and interoperable data sharing infrastructure for National Gas Transmission (NGT) supporting regulatory compliance stakeholder access and alignment with NESO’s DSI initiative. The main objective is to gain a better understanding of how we share data currently and how this will change moving forward both within established participants and enabling new participants and stakeholders to benefit from National Gas’s data. This will support the wider NESO led DSI initiative. Using two NGT data systems as a use case for this study
GGT- Novel Green Gases
Novel green molecules have the potential to make a significant contribution to the decarbonisation of the UK’s gas network while also reducing system costs. Synthetic and e-methane can play a significant role in meeting future industrial demand as well as decarbonising the power transport and domestic heat sectors. This project investigates novel green gases in more depth to understand how they can be implemented effectively and quickly deployed to decarbonise the gas sector in the UK.
Green Gas Access
Green Gas Access will define tools to improve how green gas is managed across UK distribution networks supporting net-zero goals. With fossil fuels still expected to dominate the energy mix by 2050 we must ensure resilient supply and avoid capacity loss as we integrate decentralised sources like biomethane. The solution is to enable real-time network operation including dynamic supply modelling scenario planning and technology deployment. Key outcomes include: improved green gas injection control better asset use onboarding new suppliers efficiently and supporting the transition to low-carbon systems through coordinated green gas storage and power-to-gas operation.
The Warmth of Community
This project will conduct market research on available or soon to be available hybrid products for discussion and presentation back to WWU and WW Housing to choose a preferred solution for the properties identified that are suitable to trial the equipment in. The project will provide networks with demand data and look to aggregate this over WW Housing stock to understand wider impact on gas networks if this was considered a viable option to decarbonise housing stock.
IGEM TD1 / TD13 Hydrogen Supplements Review
IGEM have received requests from operators to update the hydrogen TD1 / TD13 supplements to take account of outputs from research projects. The project will review and assess the updates required based on findings from completed hydrogen research projects. This will support the repurposing of existing pipelines and installations from Natural Gas to hydrogen and Natural Gas/hydrogen blends with input and support from users/stakeholders and formal approval by IGEM.
The project will also develop a methodology for fracture and fatigue assessments for existing Natural Gas pipelines to be repurposed to hydrogen service. This methodology will assess the impact of blends of hydrogen up to and including 100% hydrogen to determine whether pipeline derating and/or deblending is required. The requirements for the application of this specification should be included in the updates to the IGEM/TD/1 and IGEM/TD/13 hydrogen supplements.
Rising Pressure Reformer Study
This project will assess the application of Rising Pressure Reformer (RiPR) technology to produce a tuneable blend of biogenic methane and hydrogen supporting the decarbonisation of gas networks. The project will focus on the how control of the gas produced would fit with requirements for network injection and assessing locations for connection.
Stopple-Live trial (Phase 2)
The Stopple technology is a flow stop tool essential for major projects and emergency works across the LTS and NTS gas network. Its capability was tested in 100% hydrogen within a helinite environment in line with LTS Futures parameters as phase 1. This project focuses on validating flow-stopping technology as an additional deliverable with LTS Futures live hydrogen trial on the Granton to Grangemouth pipeline as a welded tee and hot-tapping operations is already being carried out. The trial will confirm the Stopple train’s effectiveness as a double-block and bleed solution for a 100% hydrogen system which will be available for the UK Gas Network. The findings will provide critical insights into the safe and efficient operation of the hydrogen networks supporting the transition from natural gas to hydrogen.
Hydrogen Permeation through the Oxide Layer Phase 1
This project is looking to address uncertainties surrounding LTS pipeline materials by investigating the effect of the oxide layer on hydrogen permeation rate for steel pipelines. This project will also investigate the formation of an oxide layer inside the pipe at different temperatures as well as how the microstructure of the pipeline steel and condition of the oxide layer affect permeation for different grades of steel. It is critical this relation is better understood as these uncertainties are currently hindering our ability to fully and accurately assess the repurposing of the LTS. The outcomes of this project have the potential to increase cost-savings and improve confidence in the existing network to carry hydrogen including blends.
Open Maps
This project has enormous potential to benefit all customers in vulnerable situations as it will provide accurate assessment of communities and all interested parties to provide suitable support to the area. This will enable GDN DNO Electricity transmission and Gas transmission partners such as community groups to specifically target areas with relevant support this will allow project partners to accurately provide information which will be bespoke to the specific needs of the area such as Carbon Monoxide awareness Priority Services Register messaging increasing awareness and registrations.
It will allow GDN’s or other service providers to enlist support for VCMA BAU or NIA projects directly addressing the needs of communities rather than adopting a broad-brush approach which has been the traditional approach. This system will present itself as the very foundation for future years projects and investments specifically as we progress through the energy system transition which will help address the very real and ever-changing needs of communities and vulnerable customers groups by putting data at the front and centre of future decision making for GDN’s and partners.
Enhancement of the anaerobic digestion process for biomethane production
The UK Government recognised that domestic biomethane production can play a significant role in decarbonising energy supplies. However biomethane production plants face technical and operational challenges. Currently the content of biomethane within biogas produced from the anaerobic digestion (AD) process is often only around 50%. This partial conversion results in lower yields for AD operators and an increase in costly gas scrubbing requirements. The increased presence of impurity gases also increases requirement for propanation to increase the calorific value high in both cost and carbon footprint.
This project seeks to address these challenges through the injection of green hydrogen into the AD process in specific quantities and at specific times to achieve greater conversion of carbon dioxide to biomethane within the acetogenesis stage of the AD process thereby increasing the yield whilst reducing the need for gas scrubbing and propanation.
NextGen Electrolysis – Wastewater to Green Hydrogen Beta
Wales and West Utilities are partnering with HydroStar Welsh Water and NGED to look at two demonstrator projects required from new electrolyser systems and the associated electrolyte that ensures resilience of hydrogen supply across the network giving best value for money and energy security within WWU’s network along with other UK wide Gas Distribution Network (GDN) customers.
Current electrolysers focus on stack-efficiency and hydrogen purity without considering real-world manufacturing and operational constraints and the high costs associated. This project focusses on utilising impurified-water e.g. rainwater storm-overflow and industrial process wastewater as feedstock which reduces operational constraints and costs for customers whilst enabling wide-scale uptake of low-carbon hydrogen.
Decentralised Alliance for South West Hydrogen (DASH)
Early cluster projects will not benefit I&C customers that are located away from industrial clusters and are traditionally more distributed in nature. These customers are unlikely to have access to hydrogen infrastructure developed through the primary industrial clusters. This presents the need for an alternative solution.
This project will explore the concept of how a larger number of low-volume hydrogen producers can support I&C customers in the absence of natural ‘clustering’ and high-volume production by using the South West region of WWU’s network as a case study. This will be done by exploring the whole systems concept of a gas network which is driven by distributed green hydrogen production at strategic locations where there is access to both gas and electricity grid infrastructure.
Demonstrating Downstream Procedures For Hydrogen
This project involves a comprehensive set of tasks aimed at implementing and validating a domestic safety system for hydrogen use including excess flow valves.
Biomethane Islands
To achieve decarbonisation targets all gas network operators in the UK need to demonstrate that the gas network can safely technically and economically facilitate the distribution of low-carbon gases (biomethane and hydrogen). In response to this challenge SGN aim to review the feasibility of the formation of biomethane islands in their Scotland area of operation. The outputs of this project will establish a business model for the optimisation of biomethane injection and formation of biomethane islands across the UK’s gas network. A feasibility study will address key areas including regulatory technical environmental social and commercial aspects as well as comprehensively assess the viability of developing Biomethane Islands. The outcome of the feasibility study will be to inform decision-making regarding project implementation. This will be captured and delivered in a comprehensive report and financial model of the business case. These islands will serve as models for sustainable living demonstrating the feasibility and benefits of a circular economy approach to energy production and waste management and offer a low disruption option for the decarbonisation of all classes of gas consumers - Industrial Commercial and Domestic.
Achieving Future Hydrogen Demand
This project constitutes a research study assessing the future demand for hydrogen across SGN regions and the role SGN infrastructure could play in facilitating access to hydrogen.
As the UK transitions to a low-carbon energy future gas networks must consider how strategic utilisation of existing assets can be realised. Using SGN’s extensive gas network to carry hydrogen instead of natural gas would be a major step towards decarbonisation. This repurposing necessitates an understanding of both the technical feasibility of repurposing pipelines to carry hydrogen and future hydrogen demand requirements.
SHINE Non-Electric Boiler
Power outages are a regular occurrence in Great Britian with average annual customer minutes lost in Great Britain range between 31.57 minutes 51.4 minutes depending on the Distribution Network Operator License Area (Statista 2021). This is of course not evenly distributed with outages varying from a few minutes up to more than a week in more extreme circumstances. Similarly single outages can affect a single property or several thousand properties depending on the cause. This project will aim to develop a low-cost user-friendly solution whereby customers in vulnerable situations will still be able to use their gas heated boiler as well as LPG and oil heated boilers in the event of a power outage.
Decentralised System Resilience
This project constitutes a research study investigating the opportunities for gas network infrastructure to support storage and balancing in a decentralised UK energy system. The research will consider how a decentralised system might look in the UK from now until 2030 and onto 2050. An evaluation will be made of how other countries are approaching decentralisation identifying examples the UK could draw on. Consideration will be given to how grid balancing will be achieved across various scenarios of peak demand and particular geographic locations in the UK and what challenges and opportunities this presents to gas networks.
Asset Records Readiness for Hydrogen
The project will evaluate and deliver a plan that ensures our asset records are suitably complete to support the net zero transition.
The project will reduce uncertainty and risk and provide a more realistic proximation of asset data.
The HSE has indicated that it will be unable to support a network’s hydrogen safety case until they receive “a clear plan for checking unknown assets and how networks will ensure that only suitable materials are present in the network”. This includes our transmission pipelines.
Additionally for the marginal extra effort it would be prudent to ensure the completeness of our asset records is sufficient for us to either plan for the conversion to hydrogen or decommission sections as users switch to other heating technologies.
Forecaster for Embedded Generation (FEmGE)
Gas networks supply embedded power stations that support the electricity network. These embedded generators can fire up without any warning to GDNs and is causing significant challenges to gas networks.
GDNs are required to submit hourly gas demand nominations to National Gas for each offtake point within specified time deadlines.
Embedded generators are small. They are not included in the UNC’s requirements to notify their GDN of intended offtake activity due to their size being below the threshold for NExAs (network exit agreements). Despite this GDNs must include the demand from these embedded generators in their nominations to ensure there is sufficient gas within their network. This causes numerous challenges for SGN and other GDNs.
GDNs’ current forecasting process does not specifically forecast embedded gas generation and current models do not take inputs from the electricity market. Embedded generators act in a variety of electricity markets yet GDNs don’t have visibility of this demand.
It is anticipated that additional embedded generators will connect in the coming months/years as the demand for electricity increases.The challenge of not having knowledge of embedded generator’s demand and its potential to contribute to a storage shortage has been acknowledged by both EGRIT (Electricity and Gas Resilience Task Group) and NESO (National Energy System Operator). The benefits of creating a notification platform supported by a ML engine are various. Namely to develop an ML-enabled forecasting tool to predict gas demand from embedded generators with increased accuracy as delivery time approaches. In addition to create a notification platform to improve real-time visibility of embedded generator activities within the electricity and gas networks.
This NIA project aims to progress the FEmGE forecasting tool from TRL 1 to TRL 7 delivering a fully functional MVP. NGN will be funding this project to the value of £92333 and SGN to £184666 of the total of £276999.
H2 Housing Design
This project will explore ventilation and explosion relief requirements for housing currently used on the gas network for pressure regulating installations (PRIs). Housings currently provide security from a range of factors from weather to vandalism while also providing the necessary relief requirements in the event of an emergency. The understanding of these requirements for Natural Gas has been developed however work conducted in the IGEM TD/13 hydrogen supplement did not fully address whether these design specifications are suitable for use with Hydrogen. This multi-stage project will first explore the design specifications listed in industry standards (IGEM/TD/13 GIS/PRS/35 SGN/SP/CE/10 etc) and understand which of these may be appropriate and which may require redesign. The latter stage of this project will take the design specifications deemed to be unsuitable for use with hydrogen and conduct testing to develop revised design specifications which would provide the necessary relief requirements.
B-Linepack+ Alpha
Linepack flexibility is key for Gas Transmission to provide system resilience by management of swings within operational limits. In a hydrogen world we know our energy content per km of linepack will decrease by up to 76%. Therefore embedded resilience systems in the form of lined rock shafts are being investigated to supplement loss in linepack capability. We envision systems if implemented for hydrogen transmission to act similar to how now decommissioned natural gas holders were utilised for operational flexibility pressure regulation supply/demand mismatch management load balancing emergency backup and production buffering.
Finding the Hidden Vulnerable
This innovation project proposal is centred on trialling the development of a predictive model to identify customers in vulnerable situations whose heat comes from Cadent delivered gas that are missing out on the protections that the Priority Service Register (PSR) brings because they are “hidden” behind a non-domestic supply contract. The aim of the predictive model would be to aid Cadent to find these customers so that it can be ensured that they receive the support that they need in the event of an interruption to supply.
Integrity Management of Gaseous Carbon Dioxide Pipelines
Existing defect assessments and repair methodologies are aligned with the P/11 P/20 and PM/DAM1 management procedures and are adopted to inspect assess and repair the pipelines for defects and take suitable measures to reduce them. However the scope and applicability of these assessment and repair methodologies in the presence of gaseous phase carbon dioxide remain uncertain. The key challenges which the project aims to address are:
- Will existing repair techniques such as epoxy shell welded shells composite wraps gouge dressing etc. be suitable for transmission of gaseous phase carbon dioxide?
- What are the different defects we may encounter or consider hazardous in the presence of carbon dioxide? What are the impacts of carbon dioxide on each defect type? And how much does water/corrosion exacerbate this?
- Have the mechanisms of failure for each defect type changed after introducing carbon dioxide?
- Can we implement the assessment and repair methodologies safely? Are the techniques safe and suitable for the pipeline operations and maintenance teams?
The project seeks to answer the above in addition to understanding the types and extent of repairs across the NTS and review the impact of carbon dioxide on the effectiveness of these inspection assessment and mitigation technologies.
Determining Future Energy Demand of B&R Team Vans with Full On-Board Power
Wales & West Utilities is undertaking a major programme of change to support decarbonisation and deliver a Net Zero gas network. Decarbonisation of the vehicle fleet is an integral component of that programme.
WWU operates a fleet of nearly 1400 commercial vehicles the majority of these being vans up to 3.5 tonnes GVW. Our fleet – mostly diesel-fuelled - plays a crucial role in providing a safe and efficient service. In addition to our vehicle fleet WWU operates ~ 900 items of mobile plant including mini diggers and a wide range of trailers many of which are specialised.
WWU vans carry a wide range of power-operated tools and equipment some of this currently being powered by hydrocarbon fuels some by electricity and some by compressed air. Approximately a third of our van fleet (~400 units) is equipped with ‘full on-board power’ – a compressor and generator mounted under the van floor and mechanically driven by the diesel engine and operating as a source of on-site power.
This group of vehicles primarily supports below-ground network repair and replacement activity: it is a significant energy consumer so to help us understand how we can make an operationally cost-effective transition to zero emissions it is the on-site energy requirements of the tools and equipment powered by this group that Cenex will evaluate for this project. This evaluation will provide information which can take account of (and feed in to) a range of different scenarios for the fleet in the future such as changes to the number and type of vans allocated to particular teams and projects.
Pathfinder Enhancements
This project will update the Pathfinder tool to improve functionality and reflect more current underlying data. Use of the tool developed in this project should result in better choices regarding investment in energy saving measures
Commercial Vehicle Fleet – Development of Total Cost of Operation Model
Decarbonisation of UK transport and the related Zero Emission Vehicle (ZEV) mandate requires companies to transition their commercial vehicle fleets to Battery Electric Vehicles (BEV) or alternative new emerging technologies (e.g. FCEC). As an operational utility network with responsibility for public safety WWU’s fleet undergoes a more challenging and varied range of duty cycles than most commercial fleets includes vehicles that are required to provide on-site power and must be capable of meeting WWU’s statutory duty to respond quickly to Public Reported Escapes.
Within this challenging operational context WWU must deliver a fleet transition at the lowest feasible cost to assure value for money for our customers. This is further complicated by the need to plan the fleet transition while the associated technological and policy landscape continues to evolve in parallel. Although the learnings generated from the project will be specific to WWU’s fleet as a case study they will be applicable to any networks with an operational fleet.
To assure a cost-effective transition and derisk future operations WWU require a Total Cost of Operation (TCO) model. This will be specifically targeted at our particular operational context capable of assessing the costs and capabilities of a range of ZEV options and crucially must be easy for staff to adopt for internal use and update in the future as new data and/or technologies become available.
The purpose of this project is to provide WWU with a TCO model that addresses our specific operational requirements ensuring that plans and investment decisions will be grounded in real-world technology assessments and our operational fleet data.
Integrity Management of Hydrogen Pipelines
Existing defect assessments and repair methodologies are aligned with the T/PM/P/11 and T/PM/P/20 management procedures and are adopted to inspect assess and repair the pipelines for defects and take suitable measures to reduce them. However the scope and applicability of the repair techniques in the presence of high-pressure hydrogen remain uncertain. The key questions which form an outline of the project are:
- What are the different types of defects we may encounter or consider injurious in the presence of hydrogen?
- What is the impact of hydrogen on each defect type? Have the mechanisms of failure changed for each defect type after hydrogen-natural gas blending?
- Will the existing repair techniques be applicable under transmission of high-pressure hydrogen and hydrogen-natural gas blends?
- Can we implement the defect assessment inspection and repair methodologies safely? Are the techniques safe and suitable for the pipeline operations and maintenance teams?
The project seeks to answer the above in addition to understanding the types and extent of repairs across the NTS and assess the impact of hydrogen on the effectiveness of these inspection assessment and mitigation technologies.
Reducing Gas Emissions During Pipeline Commissioning
Based on previous work ROSEN Engineers believe the quantity of natural gas vented during commissioning operations can safely be reduced by up to 80% through targeted changes to direct purging procedures.
For Gas Distribution Networks’ (GDNs) gas venting remains a necessary part of normal operations for maintenance or safety purposes. Previous research work undertaken by ROSEN(UK) Limited for the EIC with project partners Northern Gas Networks (NGN) and Wales and West Utilities (WWU) identified activities where venting of natural gas to atmosphere occurs (Gas Venting Research Project NIA reference number NIA_NGN_282)
Assessing Energy Impacts via Thermal Analysis
The project aims to use a vehicle-mounted thermal camera and Artificial Intelligence (AI) to detect heat loss from homes on a city-wide scale. The data will be used to assess the condition of a property regarding its ability to retain heat and provide tailored recommendations addressing insulation problems. This critical first step allows for better targeting of necessary retrofits and offers a scientifically measured alternative or complementary approach to traditional EPC.
Cominglo – Blended CV Measurement Point
This project seeks to improve the accuracy of CV measurement in gas networks which distribute blended gas streams. Element Digital Engineering will address this by first studying the physics of gas blending in the gas network using Computational Fluid Dynamics (CFD). A wide range of simulations will enable the effects of different designs and mixing technologies to be understood in relation to the various gases under consideration. The predictions of these CFD studies will be validated through the design and development of a rig to simulate blending in the network. The overall results of these studies will be used to develop a tool that can be deployed within the gas networks to facilitate the accurate prediction of co-mingling and subsequent CV measurement points supporting the design of blending systems.